ON M-RINGS AND GENERAL ZPI-RINGS

Dedicated to Professor Kentaro Murata on his 60th birthday

Takasaburo UKEGAWA

(Received January 7, 1981)

In the preceding paper [10], we have proved that a left Noetherian M-ring is a so called "general ZPI-ring" in the commutative case. Also we know that in an M-ring the multiplication of prime ideals is commutative [8]. In the present paper we define general $Z P I$-rings in section 1 and we study general properties of them, and as an important example of such rings we can give a left Noetherian semi-prime Asano left order. In section 2 we research the condition for a left Noetherian general $Z P I$-ring to be an M-ring, using minimal prime divisors of an ideal. The notation " $<$ " means a proper inclusion as the preceding papers [8], [9], [10].

1. M-rings and general ZPI-rings

Definition. If the multiplication of any two prime ideals of a ring R is commutative, and any ideal of R can be written as a produkt of powers of prime (considering R as a prime ideal) ideals of R, then we call R a general ZPI-ring. Therefore the multiplication of ideals is commutative.

In the commutative case a general ZPI-ring is necessarily Noetherian no matter whether the ring has an identity or not. But in our case the general ZPI-ring is not necessarily Noetherian as the example in [9] shows.

Proposition 1. Let R be a left Noetherian general ZPI-ring, let P be any prime ideal of R, and let \mathfrak{q} be maximal in the set of prime ideals such that $\mathfrak{q}<P$. Then for any ideal \mathfrak{a} with $\mathfrak{q}<\mathfrak{a}<P$, there is an ideal \mathfrak{b} such that $\mathfrak{a}=P \mathfrak{b}=\mathfrak{b} P$.

Proof. Let $\mathfrak{a}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{r}<P$, since R is a general $Z P I$-ring. Then $\mathfrak{p}_{i} \subseteq P$ for some \mathfrak{p}_{i}. Since $\mathfrak{q}<\mathfrak{a} \subseteq \mathfrak{p}_{i}, \mathfrak{q}<\mathfrak{p}_{i} \subseteq P$, so $\mathfrak{p}_{i}=P$. Therefore $\mathfrak{a}=P \mathfrak{p}_{1} \cdots \mathfrak{p}_{i-1} \mathfrak{p}_{i+1} \cdots$ $\mathfrak{p}_{r}=\mathfrak{b} P$, where $\mathfrak{b}=\mathfrak{p}_{1} \cdots \mathfrak{p}_{i-1} \mathfrak{p}_{i+1} \cdots \mathfrak{p}_{r}$.

As in the commutative case we have
Proposition 2. Let R be be a left Noetherian general ZPI-ring, and let P be a maximal ideal of R. Then there are no ideals between P and P^{2} (including the case that $P=P^{2}$), more generally for any positive integer n, the only ideals

