ON MODULES WITH LIFTING PROPERTIES

MANABU HARADA

(Received April 21, 1980)

We have studied the lifting property on a direct sum of completely indecomposable and cyclic hollow modules over a ring R in [8].

In this note, we shall define the lifting property of decompositions with finite direct summands in §1 and give characterizations of this in terms of endomorphism rings of R-modules in §2. We shall study, in §3, R-modules with lifting properties and show that they are very closed to R-modules with direct decomposition of completely indecomposable and cyclic hollow modules when R is right noetherian.

We shall give the dual results for the extending property and its applications in the forthcoming papers.

1. Definitions

Throughout this paper we assume that a ring R contains an identity and every R-module M is a unitary right R-module. We recall here definitions in [8].

If $\operatorname{End}_{\mathbb{R}}(M)$ is a local ring, we call M a completely indecomposable module. We denote the Jacobson radical and an injective envelope of M by J(M) and E(M), respectively. By \overline{M} we denote M/J(M). If N is a submodule of M and N/J(N) is canonically monomorphic into M/J(M), then we mean \overline{N} both N/J(N) and the image of N/J(N) into M/J(M).

If J(M) is a unique maximal and small submodule in M, we call M a cyclic hollow module (actually M is cyclic). If, for each simple submodule A of \overline{M} , there exists a completely indecomposable and cyclic hollow direct summand M_1 of M such that $\overline{M}_1=A$, then we say M has the lifting property of simple modules (modulo radical). More generally, if for any direct summand B of \overline{M} , there exists a direct summand M' of M such that $\overline{M}'=B$, we say M has the lifting property of direct summands (modulo radical). Finally if, for any finite decomposition of \overline{M} ; $\overline{M}=C_1\oplus C_2\oplus \cdots \oplus C_n$, there exists a decomposition of M; $M=M_1\oplus M_2\oplus \cdots$ $\oplus M_n$ such that $\overline{M}_i=C_i$, we say M has the lifting property of decompositions with finite direct summands (modulo radical). If the above property is satisfied for any direct decompositions, we say M has the lifting property of decompositions (modulo radical).

We recall the definition in [8].