ON p-RADICAL DESCENT OF HIGHER EXPONENT

KIYOSHI BABA

(Received January 11, 1980)

0. Introduction

In the paper [8], P. Samuel has developed the theory of p-radical descent of exponent one by making use of logarithmic derivatives. In this article we shall give a generalization of his theory to the case of p-radical descent of higher exponent with the aid of a finite set of higher derivations of finite rank.

In the first section some preparatory results are collected. Let A be a Krull domain of characteristic p>0 and K be its quotient field. Let $D=(D^{(1)}, \dots, D^{(r)})$ be an r-tuple of non-trivial higher derivations $D^{(i)}$'s of rank m_i on K which leave A invariant. For simplicity we shall abuse the notation $D^{(i)}$ to denote the ring homomorphism of K into a truncated polynomial ring of order m_i over K, i.e., $K[t_i: m_i] := K[T_i]/T_i^{m_i+1}$ associated to the higher derivation $D^{(i)}$. Let K' be the intersection of the fields of $D^{(i)}$ -constants $(1 \le i \le r)$ and let $A' := A \cap K'$. Let $T = (T_1, \dots, T_r)$ be an r-ruple of indeterminates and let t_i be the residue class of T_i modulo $T_i^{m_i+1}$ in $K[T_i]/T_i^{m_i+1}$. We shall set $t := (t_1, \dots, t_r)$ and $m := (m_1, \dots, m_r)$. We shall denote $\prod_{i=1}^r K[t_i: m_i]$ by K[t:m]. Similarly we denote $\prod_{i=1}^r A[t_i: m_i]$ by A[t:m] where $A[t_i: m_i]$ is a truncated polynomial ring of order m_i over A. Furthermore we shall define a ring homomorphism D of K into K[t:m] by $D(z) = (D^{(1)}(z), \dots, D^{(r)}(z))$ ($z \in K$). Let \mathcal{L}_A and \mathcal{L}'_A be the sets of elements defined respectively by

$$\mathcal{L}_A = \{ \boldsymbol{D}(\boldsymbol{z}) | \boldsymbol{z} \in K[\boldsymbol{t}:\boldsymbol{m}] | \boldsymbol{z} \in K^*, \ \boldsymbol{D}(\boldsymbol{z}) | \boldsymbol{z} \in A[\boldsymbol{t}:\boldsymbol{m}] \} ,$$

 $\mathcal{L}_A' = \{ \boldsymbol{D}(\boldsymbol{u}) | \boldsymbol{u} | \boldsymbol{u} \in A^* \} .$

Let $\mathbf{j}: \operatorname{Div}(A') \to \operatorname{Div}(A)$ be the homomorphism defined by $\mathbf{j}(\mathcal{Q}) = \mathbf{e}(\mathcal{P})\mathcal{P}$ where, \mathcal{Q} is a prime ideal of height one in A', \mathcal{P} is the unique prime ideal of height one in A with $\mathcal{P} \cap A' = \mathcal{Q}$ and $\mathbf{e}(\mathcal{P})$ is the ramification index of \mathcal{P} over \mathcal{Q} . Then we can define the homomorphism $\overline{\mathbf{j}}: \operatorname{Cl}(A') \to \operatorname{Cl}(A)$ induced by \mathbf{j} (cf. [8]). Let \mathcal{D} be the subgroup of $\operatorname{Div}(A')$ consisting of divisors E's such that $\mathbf{j}(E)$ is principal and let $\Phi_0: \mathcal{D} \to \mathcal{L}_A/\mathcal{L}_A'$ be the homomorphism defined by $\Phi_0(E) = \mathbf{D}(\mathbf{x})/\mathbf{x}$ modulo \mathcal{L}_A' , where $E \in \mathcal{D}$ and $\mathbf{j}(E) = \operatorname{div}_A(\mathbf{x})$. Let $\Phi: \operatorname{Ker}(\overline{\mathbf{j}}) = \mathcal{D}/F(A') \to \mathcal{L}_A/\mathcal{L}_A'$ be the homomorphism induced by Φ_0 where F(A') denotes the subgroup of $\operatorname{Div}(A')$