ON p-RADICAL DESCENT OF HIGHER EXPONENT

Kiyoshi BABA

(Received January 11, 1980)

0. Introduction

In the paper [8], P. Samuel has developed the theory of p-radical descent of exponent one by making use of logarithmic derivatives. In this article we shall give a generalization of his theory to the case of p-radical descent of higher exponent with the aid of a finite set of higher derivations of finite rank.

In the first section some preparatory results are collected. Let A be a Krull domain of characteristic $p>0$ and K be its quotient field. Let $D=\left(\underline{D}^{(1)}\right.$, $\cdots, \underline{D}^{(r)}$) be an r-tuple of non-trivial higher derivations $\underline{D}^{(i)}$'s of rank m_{i} on K which leave A invariant. For simplicity we shall abuse the notation $\underline{D}^{(i)}$ to denote the ring homomorphism of K into a truncated polynomial ring of order m_{i} over K, i.e., $K\left[t_{i}: m_{i}\right]:=K\left[T_{i}\right] / T_{i}^{m_{i}+1}$ associated to the higher derivation $\underline{D}^{(i)}$. Let K^{\prime} be the intersection of the fields of $\underline{D}^{(i)}$-constants $(1 \leq i \leq r)$ and let $A^{\prime}:=$ $A \cap K^{\prime}$. Let $\boldsymbol{T}=\left(T_{1}, \cdots, T_{r}\right)$ be an r-ruple of indeterminates and let t_{i} be the residue class of T_{i} modulo $T_{i}^{m_{i}+1}$ in $K\left[T_{i}\right] / T_{i}^{m_{i}+1}$. We shall set $t:=\left(t_{1}, \cdots, t_{r}\right)$ and $\boldsymbol{m}:=\left(m_{1}, \cdots, m_{r}\right)$. We shall denote $\prod_{i=1}^{r} K\left[t_{i}: m_{i}\right]$ by $K[\boldsymbol{t}: \boldsymbol{m}]$. Similarly we denote $\prod_{i=1}^{r} A\left[t_{i}: m_{i}\right]$ by $A[\boldsymbol{t}: \boldsymbol{m}]$ where $A\left[t_{i}: m_{i}\right]$ is a truncated polynomial ring of order m_{i} over A. Furthermore we shall define a ring homomorphism \boldsymbol{D} of K into $K[t: \boldsymbol{m}]$ by $\boldsymbol{D}(z)=\left(D^{(1)}(z), \cdots, \underline{D}^{(r)}(z)\right)(z \in K)$. Let \mathcal{L}_{A} and \mathcal{L}_{A}^{\prime} be the sets of elements defined respectively by

$$
\begin{aligned}
& \mathcal{L}_{A}=\left\{\boldsymbol{D}(z) / z \in K[\boldsymbol{t}: \boldsymbol{m}] \mid z \in K^{*}, \boldsymbol{D}(z) / z \in A[\boldsymbol{t}: \boldsymbol{m}]\right\} \\
& \mathcal{L}_{A}^{\prime}=\left\{\boldsymbol{D}(u) / u \mid u \in A^{*}\right\}
\end{aligned}
$$

Let $\boldsymbol{j}: \operatorname{Div}\left(A^{\prime}\right) \rightarrow \operatorname{Div}(A)$ be the homomorphism defined by $\boldsymbol{j}(\mathcal{G})=e(\mathscr{P}) \mathscr{P}$ where, \mathcal{G} is a prime ideal of height one in A^{\prime}, \mathscr{P} is the unique prime ideal of height one in A with $\mathscr{P} \cap A^{\prime}=\mathcal{G}$ and $e(\mathscr{P})$ is the ramification index of \mathscr{P} over \mathcal{G}. Then we can define the homomorphism $\overline{\boldsymbol{j}}: \mathrm{Cl}\left(A^{\prime}\right) \rightarrow \mathrm{Cl}(A)$ induced by \boldsymbol{j} (cf. [8]). Let \mathscr{D} be the subgroup of $\operatorname{Div}\left(A^{\prime}\right)$ consisting of divisors E 's such that $\boldsymbol{j}(E)$ is principal and let $\Phi_{0}: \mathscr{D} \rightarrow \mathcal{L}_{A} / \mathcal{L}_{A}^{\prime}$ be the homomorphism defined by $\Phi_{0}(E)=\boldsymbol{D}(x) / x$ modulo \mathcal{L}_{A}^{\prime}, where $E \in \mathscr{D}$ and $\boldsymbol{j}(E)=\operatorname{div}_{A}(x)$. Let $\Phi: \operatorname{Ker}(\bar{j})=\mathscr{D} \mid F\left(A^{\prime}\right) \rightarrow \mathcal{L}_{A} / \mathcal{L}_{A}^{\prime}$ be the homomorphism induced by Φ_{0} where $F\left(A^{\prime}\right)$ denotes the subgroup of $\operatorname{Div}\left(A^{\prime}\right)$

