Kasue, A. Osaka J. Math. 18 (1981), 577-582

ON RIEMANNIAN MANIFOLDS ADMITTING CERTAIN STRICTLY CONVEX FUNCTIONS

ATSUSHI KASUE

(Received March 18, 1980)

1. Introduction. Let M be an *m*-dimensional connected complete Riemannian manifold with metric g. For a smooth function f on M, the Hessian $D^2 f$ of f is defined by $D^2 f(X,Y) = X(Yf) - D_X Y \cdot f(X,Y \in TM)$. By a theorem of H.W. Wissner ([5; Satz. II. 1.3]), if there is a smooth function f on M such that $D^2 f = g$ on M, then M is isometric to Euclidean space. In this note, we shall prove that if the Hessian of a smooth function f on M is close enough to g, then M is quasi-isometric to Euclidean space in the following sense: There exists a diffeomorphism $F: M \to R^m$ and some positive constant μ such that for each tangent vector X on M, $\mu^{-1} ||X||_M \leq ||F_*X||_{R^m} \leq ||X||_M$. Our result contains the above theorem by Wissner as a special case $(\mu=1)$, and generalises Yagi's theorem ([7]). Our theorem is stated as follows.

Theorem. Let M be an m-dimensional connected complete Riemannian manifold with metric g. Suppose there exists a smooth function f on M which satisfies the following conditions:

(i)
$$(1-H_1(f(x)))g(X,X) \leq \frac{1}{2}D^2f(X,X) \leq (1+H_2(f(x)))g(X,X)$$
,

where $X \in T_x M(x \in M)$ and each H_i (i=1,2) is a nonnegative continuous function on R,

(ii) $1-H_1(t) > 0$ for $t \in R$ and $\lim_{i \to \infty} H_i(t) = 0$ (i = 1, 2), (iii) $\begin{cases} \int_{-\infty}^{\infty} H_i(s)/s \, ds < +\infty , \\ \int_{-\infty}^{\infty} (\int_{0}^{s} H_i(u) du/s^2) ds < +\infty \ (i = 1, 2) . \end{cases}$

Then M is quasi-isometric to Euclidean space.

2. Proof of theorem and corollaries. Let M be an m-dimensional connected complete Riemannian manifold with metric g.

Lemma 1. Let M and g be as above. Let f be a smooth function on M such