Kitada, H. and Kumano-go, H. Osaka J. Math. 18 (1981), 291-360

A FAMILY OF FOURIER INTEGRAL OPERATORS AND THE FUNDAMENTAL SOLUTION FOR A SCHRÖDINGER EQUATION*

HITOSHI KITADA AND HITOSHI KUMANO-GO

(Received December 12, 1979)

Introduction

In this paper we shall study the theory of Fourier integral operators on \mathbb{R}^n depending on a parameter $h \in (0,1)$ with non-homogeneous phase functions and certain symbols in sections 1-4, and apply this theory to the construction of the fundamental solutions for the Cauchy problem of a pseudo-differential equation of Schrödinger's type in sections 5 and 6.

In section 1 we shall study a calculus of a family of pseudo-differential operators $P_h = p_h(X, D_x)$ with C^{∞} -symbols $p_h(x, \xi)$ depending on a parameter $h \in (0, 1)$, which is defined by

(1)
$$P_h u(x) = \int e^{ix \cdot \xi} p_h(x,\xi) \hat{u}(\xi) d\xi, \quad u \in \mathcal{G},$$

where $d\xi = (2\pi)^{-n} d\xi$, $\hat{u}(\xi)$ denotes the Fourier transform of u, and \mathscr{G} denotes the Schwartz space of rapidly decreasing functions on \mathbb{R}^n . Let $\mathscr{B}(\mathbb{R}^{2n})$ be the space of \mathbb{C}^{∞} -functions in \mathbb{R}^{2n} whose derivatives of any order are all bounded in \mathbb{R}^{2n} . Then, the symbols $p_k(x,\xi)$ are defined as those functions which satisfy

(2)
$$``\{h^{-m-\rho|\mathfrak{G}|+\delta|\beta|}D_x^\beta\partial_\xi^{\mathfrak{G}}p_h(x,\xi)\}_{0\leq h\leq 1} \text{ is bounded in } \mathcal{B}(\mathbb{R}^{2n})''$$

for any α , β with some $-\infty < m < \infty$ and $0 \le \delta \le \rho \le 1$, and we denote this symbol class by $B^m_{\rho,\delta}(h)$.

In section 2 we shall first define a class $P(\tau, l)$ of phase functions with $0 \le \tau < 1$ and an integer $l \ge 0$ as the class of C^{∞} -functions such that $J(x,\xi) \equiv \phi(x,\xi) - x \cdot \xi$ satisfies

(3)
$$|J|_{l} \equiv \sum_{|\alpha + \beta| \leq 1} \sup_{x,\xi} \{ |D_{x}^{\beta} \partial_{\xi}^{\alpha} J(x,\xi)| / \langle x;\xi \rangle^{2-|\alpha + \beta|} \} + \sum_{2 \leq |\alpha + \beta| \leq 2+l} \sup_{x,\xi} \{ |D_{x}^{\beta} \partial_{\xi}^{\alpha} J(x,\xi)| \} \leq \tau \\ (\langle x;\xi \rangle = (1 + |x|^{2} + |\xi|^{2})^{1/2})$$

^{*} This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.