# ON THE FUNDAMENTAL SOLUTION FOR A DEGENERATE HYPERBOLIC SYSTEM 

Kenzo SHINKAI

(Received November 2, 1979)

Introduction. Let $S\left[m_{1}, m_{2}\right]$ denote the set of all $C^{\infty}$-symbols $a(t, x, \xi)$ on $[0, T] \times R_{x}^{n} \times R_{\xi}^{n}(0<T \leqq 1)$ such that

$$
\begin{equation*}
\left|D_{t}^{j} D_{\xi}^{\alpha} D_{x}^{\beta} a(t, x, \xi)\right| \leqq C_{j, \alpha, \beta}\langle\xi\rangle^{m_{1}-|\alpha|}\left(t+\langle\xi\rangle^{-\omega}\right)^{m_{2}-j} \tag{0.1}
\end{equation*}
$$

for constants $C_{j, \alpha, \beta}$, where $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$ and $\omega=1 /(l+1)$ with an integer $l>0$.
Consider a hyperbolic operator of first order:

$$
\boldsymbol{L}=\boldsymbol{D}_{t}-t^{l}\left[\begin{array}{ccc}
\mu_{1}(t, X, & \left.D_{x}\right) & 0  \tag{0.2}\\
& \ddots & \\
0 & \ddots & \\
& & \mu_{m}\left(t, X, D_{x}\right)
\end{array}\right]+\boldsymbol{B}(t)
$$

where $\mu_{j}, j=1, \cdots, m$ are real valued and satisfy

$$
\left\{\begin{align*}
\text { i) } & \mu_{j}(t, x, \xi) \in S[1,0]  \tag{0.3}\\
\text { ii) } & \left|\mu_{j}(t, x, \xi)-\mu_{k}(t, x, \xi)\right| \geqq c\langle\xi\rangle \quad(j \neq k)
\end{align*}\right.
$$

for a constant $c>0$, and the symbol $\sigma(\boldsymbol{B}(t))(x, \xi)$ of the lower order operator $\boldsymbol{B}(t)$ satisfies

$$
\begin{equation*}
\sigma(\boldsymbol{B}(t))(x, \xi) \in S[0,-1] \tag{0.4}
\end{equation*}
$$

The purpose of the present paper is to construct the fundamental solution $\boldsymbol{E}(t, s)\left(0 \leqq s \leqq t \leqq T_{0}\right)$ of the Cauchy problem

$$
\left\{\begin{array}{l}
\boldsymbol{L} U=\Phi(t) \quad \text { on } \quad\left[s, T_{0}\right]  \tag{0.5}\\
\left.U\right|_{t=s}=\Psi
\end{array}\right.
$$

for a small constant $T_{0}\left(0<T_{0} \leqq T\right)$. It should be noted that the operator $\boldsymbol{L}$ is degenerate at $t=0$ and $\boldsymbol{B}(t)$ is not uniformly bounded on $[0, T]$ as a family of pseudo-differential operators with parameter $t \in[0, T]$.

To construct $\boldsymbol{E}(t, s)$, we find first the perfect diagonalizer $\boldsymbol{N}(t)$ such that the symbol $\sigma(\boldsymbol{N}(t))(x, \xi)$ belongs to $S[0,0]$ and

