RIBBON KNOTS AND RIBBON DISKS

Kouhei ASANO, Yoshiniko MARUMOTO and
Takaaki YANAGAWA

(Received October 23, 1979)

For a ribbon knot, we will define, in $\S 1$, the ribbon disk pair associated with it. On the other hand, J.F.P. Hudson and D.W. Sumners gave a method to construct a disk pair [2], [13]. In §1 and 2, we will generalize their construction and show that a ribbon disk pair is obtained by our construction and vice versa.

In [10], C.D. Papakyriakopoulos proved that the complement of a classical knot is aspherical. As an analogy of this, we will prove, in §3, that the compelment of a ribbon disk is aspherical, and it follows from this fact that the fundamental group of a ribbon knot complement has no element of finite order. In the final section, we will calculate the higher homotopy groups of a higherdimensional ribbon knot complement, and in Theorem 4.4 we show that a ribbon n-knot for $n \geqq 3$ is unknotted if the fundamental group of the knot complement is the infinite cyclic group. This result is proved independently by A. Kawauchi and T. Matumoto [5].

Throughout the paper, we work in the piecewise-linear category although the results remain valid in the smooth category.

1. Preliminaries

1.1. By S^{n} we denote an n-sphere, and by B^{n} or D^{n} an n-disk. By ∂M, int M and $\mathrm{cl} M$ we denote the boundary, the interior and the closure of a manifold M respectively. In this paper, every submanifold in a manifold is assumed to be locally flat. If $\partial M \neq \emptyset$, by $\mathscr{D} M$ we mean the double of M, i.e. $\mathscr{D} M$ is obtained from the disjoint union of two copies of M by identifying their boundaries via the identity map. For a subcomplex C in a manifold $M, N(C ; M)$ is a regular neighbourhood of C in M. By a pair (M, W) we denote a manifold M and a proper submanifold W in M, i.e. $W \cap \partial M=\partial W$. An n-disk pair is a pair (M, W) such that M is a disk and W an n-disk. Two pairs $\left(M_{1}, W_{1}\right)$ and $\left(M_{2}, W_{2}\right)$ are equivalent if there exists a homeomorphism from M_{1} to M_{2} which maps W_{1} to W_{2}, and we will identify two equivalent manifold pairs. Let $\mathscr{D}(M, W)=(\mathscr{D} M, \mathscr{D} W)$ and $\partial(M, W)=(\partial M, \partial W)$. We denote the unit interval [0, 1] by I, and the Eu-

