Yamada, Y. Osaka J. Math. 17 (1980), 303-323

SOME REMARKS ON THE EQUATION $y_{tt} - \sigma(y_x)y_{xx} - y_{xtx} = f$

YOSHIO YAMADA

(Received June 29, 1979)

1. Introduction

In [4], Greenberg, MacCamy and Mizel considered the following initialboundary value problem which we denote by (Pr.I):

(1.1) $y_{tt} - \sigma(y_x) y_{xx} - y_{xtx} = f,$ $(x,t) \in (0,1) \times (0,\infty),$

(1.2)
$$y(0,t) = y(1,t) = 0, \qquad t \in (0,\infty),$$

(1.3) $y(x,0) = y_0(x), y_t(x,0) = y_1(x), \quad x \in (0,1),$

where y is an unknown function and y_0 , y_1 and f are given functions. (For the physical meaning of this problem, see [4].) They established the existence, uniqueness and stability of smooth solutions of (Pr.I) under the assumptions that σ is a positive $C^2(-\infty, \infty)$ function and that initial data y_0 and y_1 are, respectively, $C^4[0,1]$ and $C^2[0,1]$ functions vanishing together with their second derivatives at zero and one. The method of proof used in [4] are rather complicate and heavily depends upon some special properties of the Green function of the heat equation. (See also Davis [1], Ebihara [2] and Greenberg [3].)

The main purpose of the present paper is to weaken the assumptions in [4] and give a simplified proof of the existence, uniqueness and stability of smooth solutions of (Pr.I). We assume that σ is a non-negative $C^1(-\infty, \infty)$ function and that initial data y_0 and y_1 are, respectively, $C^2[0,1]$ and C[0,1] functions such that $y_0(0)=y_0(1)=y_{0,xx}(0)=y_{0,xx}(1)=0$ and $y_1(0)=y_1(1)=0$. Under these assumptions, we choose a Banach space $X_0=\{y\in C[0,1]; y(0)=y(1)=0\}$ and regard y as a map from $[0,\infty)$ to X_0 . Let $A=\partial^2/\partial x^2$. We can formally rewrite (Pr.I) in an abstract form:

(1.4)
$$\begin{cases} y_{tt} - Ay_t - By = f, \quad t \in (0, \infty), \\ y(0) = y_0, y_t(0) = y_1, \end{cases}$$

where B is a nonlinear operator defined by $By(x) = \sigma(y_x(x))y_{xx}(x)$. Set $u = y_t$ and v = Ay. Then (1.4) is equivalent to the following: