A NOTE ON SULLIVAN COMPLETION

Dedicated to Professor Tatsuji Kudo on his 60th birthday

YASUMASA HIRASHIMA

(Received November 10, 1978)

In this note we give an alternative construction of the Sullivan finite completion for a "good" space by only making use of the standard techniques in homotopy theory.

Lct $c: X \to Y$ be a based map of connected based spaces. We say that c is a π_* -finite completion of X if it is the finite completion on π_1 and π_1 -finite completion of the higher homotopy.

Theorem 0 (Sullivan [8, Theorem 3.1. ii), Corollary of proof]).

Let X be a connected based space with "good" homotopy groups. A map $c: X \rightarrow Y$ is equivalent to the finite completion if and only if c is a π_* -finite completion.

Sullivan [8; Theorem 3.1. i)] also shows that sufficiently many spaces have "good" homotopy groups. Thus, to construct Sullivan finite completion, it is enough to construct a π_* -finite completion.

Since our arguments are quite formal, analogous l-finite construction is also available for a set l of primes.

1. π_{*}-finite completion and Main Theorem

Let X be a connected based space and let $\{M_i\}_{i\in I}$ be a projective system of finite π_1X -modules and π_1X -(equivariant) homomorphisms. Then we have a projective system $\{H^n(X, *; M_i)\}_{i\in I}$ and compatible homomorphisms $H^n(X, *; \lim M_i) \to H^n(X, *; M_i)$, where $H^n(X, *; M_i)$, $H^n(X, *; \lim M_i)$ are n-th cohomology groups with twisted coefficients M_i , $\lim M_i$ respectively.

Theorem 1.1. We have a natural isomorphism

$$H^n(X, *; \lim M_i) \simeq \lim H^n(X, *; M_i)$$
.

Following [8], we say that π is a good group (resp. a weakly good group) if

$$H^{n}(\pi; M) \simeq \operatorname{colim} H^{n}(\pi_{\alpha}; M) \simeq H^{n}(\hat{\pi}; M)$$

(resp. $H^{n}(\pi; M) \simeq H^{n}(\hat{\pi}; M)$)