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In this note we give an alternative construction of the Sullivan finite com-
pletion for a ““good” space by only making use of the scandard techniques in
homotopy theory.

Lct ¢: X—Y be a based map of connected based spaces. We say that ¢
is a m4-finite completion of X if it is the finite completion on 7, and =,-finite
completion of the higher homotopy.

Theorem 0 (Sullivan [8, Theorem 3.1. ii), Corollary of proof]).

Let X be a connected based space with “‘good” homotopy groups. A map
c: X—Y is equivalent to the finite completion if and only if ¢ is a wy-finite com-
pletion.

Sullivan [8; Theorem 3.1. i)] also shows that sufficiently many spaces
have “‘good” homotopy groups. Thus, to construct Sullivan finite comple-
tion, it is enough to construct a my-finite completion.

Since our arguments are quite formal, analogous /-finite construction is
also available for a set / of primes.

1. =,-finite completion and Main Theorem

Let X be a connected based space and let {M},c; be a projective system
of finite mX-modules and = X-(equivariant) homomorphisms. Then we
have a projective system {H"(X, *; M,)},c; and compatible homomorphisms
H"(X, *; lim M;) > H"(X, *; M,), where H*(X, *; M;), H'(X, *; lim M) are
n-th cohomology groups with twisted coefficients M;, lim M; respectively.

Theorem 1.1. We have a natural isomorphism
H"(X, *; lim M) =1lim H*(X, *; M;).

Following [8], we say that # is a good group (resp. a weakly good group) if
H"(m; M) == colim H"(my; M)=H"(#; M)
(resp. H™(m; M) = H"(#; M))



