Ehrlich, P. E. Osaka J. Math. 16 (1979), 439-446

## BOUNDARY POINTS OF THE DIRICHLET FUNDAMENTAL REGION

## PAUL E. EHRLICH\*

(Received March 17, 1978)

## 1. Introduction

Recently many of the geometric aspects of the classical theory of Fuchsian groups have been extended by Eberlein and O'Neill [5] and by Eberlein [1]-[4] to a class of simply connected complete riemannian manifolds including those with sectional curvature  $K \leq c < 0$ . In [2] and [5] it was shown how to compactify any *n*-manifold in this class to obtain a topological *n*-manifold  $\overline{M} =$  $M \cup M(\infty)$  homeomorphic to  $D^n$ . Since the ideal boundary  $M(\infty)$  consists of classes of asymptotic geodesic rays, any group of isometries  $\Gamma$  acting on Mextends naturally to a group of homeomorphisms of  $\overline{M}$ .

In this paper we consider discrete groups  $\Gamma$  of isometries possibly containing elliptic elements acting on manifolds in this class. Given a non fixed point  $p_0$  of  $\Gamma$ , let  $F_0$  denote the open Dirichlet fundamental region for  $\Gamma$  based at  $p_0$  and let  $G_0 = cl(F_0)$  where the closure is taken in M. Let  $\partial^{\infty}(F_0)$  denote those points of the cone closure of  $G_0$  in  $\overline{M}$  lying in the ideal boundary  $M(\infty)$ . We first prove (Theorem 3.2) that  $x \in \partial^{\infty}(F_0)$  if and only if all the points of the orbit  $\Gamma(p_0)$  lie on or outside the horosphere  $L(p_0, x)$  passing through  $p_0$  determined by x. One consequence of this result is that axial fixed points of  $\Gamma$ cannot lie in  $\partial^{\infty}(F_0)$ . Thus the union of the cone closures of the translates of the Dirichlet fundamental region need not pave  $\overline{M}$ .

Motivated by recent results in the theory of Fuchsian groups, we then restrict our attention to geometrically finite discrete isometry groups. Here we will say that  $\Gamma$  is geometrically finite at  $p_0$  if the Dirichlet fundamental region  $F_0$  for  $\Gamma$ based at  $p_0$  has only finitely many sides. If  $\Gamma$  is geometrically finite at  $p_0$  and  $x \in L(\Gamma) \cap \partial^{\infty}(F_0)$ , then x in fact lies in  $\partial^{\infty}(bd F_0)$ .

It is a classical result of automorphic function theory ([8], p. 133) that if the fundamental polygon for a Fuchsian group is finite sided, then the boundary points of the fundamental polygon in  $S^1$  are either ordinary points or para-

<sup>\* &</sup>quot;This research was funded by a grant from the Research Council of the Graduate School, University of Missouri-Columbia."