A DIOPHANTINE EQUATION ARISING FROM TIGHT 4-DESIGNS

Andrew BREMNER

(Received July 5, 1978)

Ito [1,2] and Enomoto, Ito, Noda [3] show that there exist only finitely many tight 4-designs, by proving that such a design gives rise to a unique rational integral solution of the diophantine equation

$$
\begin{equation*}
\left(2 y^{2}-3\right)^{2}=x^{2}\left(3 x^{2}-2\right) \tag{1}
\end{equation*}
$$

and then invoking a result of Mordell [4] to say that this equation has only finitely many solutions in integers x, y. A privately communicated conjecture is that (1) has only the 'obvious' solutions $(\pm x, \pm y)=(1,1),(3,3)$, with the implication that the only tight 4-designs are the Witt designs. We show here that this is indeed the case.

We are exclusively interested in integral points on the curve (1), which is a lightly disguised elliptic curve; standard arguments show that the group of rational points has one generator of infinite order which may be taken to be $(3,3)$.

Suppose now that x, y are integers satisfying (1). Then there is an integer w with

$$
\begin{align*}
& 3 x^{2}-2=w^{2} \\
& 2 y^{2}-3=w x . \tag{2}
\end{align*}
$$

Clearly x, w, y are odd. Following Cassels [5] we write (2), in virtue of the identity $w^{2}-3 x^{2}+2 w x \sqrt{-3}=(w+x \sqrt{-3})^{2}$, in the form

$$
\begin{equation*}
\left(\frac{w+x \sqrt{-3}}{2}\right)^{2}-y^{2} \sqrt{-3}=\frac{-1-3 \sqrt{-3}}{2} \tag{3}
\end{equation*}
$$

We now work in the algebraic number field $Q(\theta)$ where $\theta^{2}=\sqrt{-3}$. It is easy to check that the ring of integers of $Q(\theta)$ has Z-basis $\left\{1, \theta, \frac{1+\theta^{2}}{2}, \frac{\theta+\theta^{3}}{2}\right\}$, that the class-number is 1 , and that the group of units is generated by $\{-\omega, \omega+\theta\}$ where $\omega=\frac{-1-\theta^{2}}{2}$ is a cube root of unity. The relative norm to $Q(\sqrt{ } \overline{-3})$ of

