Harada, K. Osaka J. Math. 15 (1978), 633-635

THE AUTOMORPHISM GROUP AND THE SCHUR MULTIPLER OF THE SIMPLE GROUP OF ORDER 2¹⁴·3⁶·5⁶·7·11·19

KOICHIRO HARADA¹⁾

(Received August 8, 1977)

As in [1], F denotes the simple group of order $2^{14} \cdot 3^6 \cdot 5^6 \cdot 7 \cdot 11 \cdot 19$. F is popularly called F_5 as it appears in the centralizer of an element of order 5 of the so called "Monster."

The simple group F has been constructed by S. Norton [2] and the automorphism group of it has also been determined by him. From his construction of F it can be seen that F has an outer automorphism of order 2.

In this note, we shall give an alternate proof of the fact that $|\operatorname{Aut}(F): F| \leq 2$. We also show that the Schur multiplier of F is trivial.

Theorem A. |Aut(F): F| = 2 and $H^2(F, C^*) = 0$.

By [1, Proposition 2.13], F contains a subgroup F_0 isomorphic to the alternating group A_{12} of degree 12. It is easy to see the following:

Lemma 1. F_0 is maximal in F. Every subgroup of F isomorphic to F_0 is conjugate in F to F_0 .

Proof of the first part of Theorem A. Suppose that $|\operatorname{Aut}(F): F| > 2$. Then there exists an element $\alpha \in \operatorname{Aut}(F)$ of order p, p a prime, such that $C_F(\alpha) \supseteq F_0$. Let x be an element of $F_0 \cong A_{12}$ of type (12345). Then by [1, Lemma 2.17], $C_F(x) \cong Z_5 \times U_3(5)$. Since no element of $\operatorname{Aut}(U_3(5))^{\sharp}$ centralizes a subgroup of $U_3(5)$ isomorphic to $A_7, \langle C_F(x), \alpha \rangle \cong \langle \alpha \rangle \times Z_5 \times U_3(5)$. Hence by the maximality of F_0 , $[F, \alpha] = 1$. This contradiction shows that $|\operatorname{Aut}(F): F| \leq 2$.

Proof of the second part of Theorem A. Let m(F) be the order of the Schur multiplier of F. We denote by $m_p(F)$ the *p*-part of m(F). \tilde{F} will denote a central extension of F. For a subgroup A of F, \tilde{A} will denote the inverse image of Ain \tilde{F} .

Lemma 2. $m_2(F) = 1$.

Proof. Let \widetilde{F} be a group such that $\widetilde{F}/Z(\widetilde{F}) \cong F$ and $Z(\widetilde{F}) \cong Z_2$. F contains

¹⁾ This research was supported in part by NSF Grant MCS 76-07253.