THE AUTOMORPHISM GROUP AND THE SCHUR MULTIPLER OF THE SIMPLE GROUP OF ORDER 214.36.56.7.|l-19

Koichiro HARADA ${ }^{1)}$

(Received August 8, 1977)

As in [1], F denotes the simple group of order $2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19 . \quad F$ is popularly called F_{5} as it appears in the centralizer of an element of order 5 of the so called "Monster."

The simple group F has been constructed by S. Norton [2] and the automorphism group of it has also been determined by him. From his construction of F it can be seen that F has an outer automorphism of order 2.

In this note, we shall give an alternate proof of the fact that $|\operatorname{Aut}(F): F| \leq 2$. We also show that the Schur multiplier of F is trivial.

Theorem A. $|\operatorname{Aut}(F): F|=2 \quad$ and $\quad H^{2}\left(F, C^{*}\right)=0$.
By [1, Proposition 2.13], F contains a subgroup F_{0} isomorphic to the alternating group A_{12} of degree 12. It is easy to see the following:

Lemma 1. F_{0} is maximal in F. Every subgroup of F isomorphic to F_{0} is conjugate in F to F_{0}.

Proof of the first part of Theorem A. Suppose that $|\operatorname{Aut}(F): F|>2$. Then there exists an element $\alpha \in \operatorname{Aut}(F)$ of order p, p a prime, such that $C_{F}(\alpha)$ $\supseteq F_{0}$. Let x be an element of $F_{0} \cong A_{12}$ of type (12345). Then by [1, Lemma 2.17], $C_{F}(x) \cong Z_{5} \times U_{3}(5)$. Since no element of $\operatorname{Aut}\left(U_{3}(5)\right)^{*}$ centralizes a subgroup of $U_{3}(5)$ isomorphic to $A_{7},\left\langle C_{F}(x), \alpha\right\rangle \cong\langle\alpha\rangle \times Z_{5} \times U_{3}(5)$. Hence by the maximality of $F_{0},[F, \alpha]=1$. This contradiction shows that $|\operatorname{Aut}(F): F| \leq 2$.

Proof of the second part of Theorem A. Let $m(F)$ be the order of the Schur multiplier of F. We denote by $m_{p}(F)$ the p-part of $m(F)$. \widetilde{F} will denote a central extension of F. For a subgroup A of F, \vec{A} will denote the inverse image of A in \widetilde{F}.

Lemma 2. $\quad m_{2}(F)=1$.
Proof. Let \widetilde{F} be a group such that $\widetilde{F} / Z(\widetilde{F}) \cong F$ and $Z(\widetilde{F}) \cong Z_{2} . \quad F$ contains

[^0]
[^0]: 1) This research was supported in part by NSF Grant MCS 76-07253.
