ON THE SCHUR INDICES OF THE FINITE UNITARY GROUPS

Zyozyu OHMORI

(Received March 15, 1977) (Revised September 29, 1977)

Introduction

Let F_q denote the finite group of characteristic p with q elements. We consider the finite unitary group $U(n, q^2)$ of rank n relative to the quadratic extension F_{q^2}/F_q . For a complex irreducible character \mathcal{X} of a finite group, the Schur index of \mathcal{X} with respect to the field \mathbf{Q} of rational numbers is defined to be the minimal degree among all the extensions $K/\mathbf{Q}(\mathcal{X})$ such that \mathcal{X} is realizable in K. Here $\mathbf{Q}(\mathcal{X})$ is the extension of \mathbf{Q} generated by the values of \mathcal{X} . We denote this index by $m_{\mathbf{Q}}(\mathcal{X})$. In this paper, we shall determine the Schur indices of all the complex irreducible characters of $U(n, q^2)$ for sufficiently large p and q. Our main result is the following theorem.

Main Theorem. Assume that p and q are sufficiently large. Then the Schur index of any complex irreducible character of $U(n, q^2)$ with respect to the field of rational numbers is one.

REMARK. If $n \le 5$, it is enough only to assume $p \ne 2$ (see §2).

The theorem follows from

Theorem A (R. Gow [3], p 112). For any complex irreducible character X of $U(n, q^2)$, $m_Q(X)$ divides 2.

Theorem B. The values of any complex irreducible character of $U(n, q^2)$ on unipotent elements are rational integers and its Schur index divides these values.

This will be proved in Section 4.

Theorem C. Assume that p and q are sufficiently large (if $n \le 5$, this assumption can be dropped out). Then for any complex irreducible character X of $U(n, q^2)$, there is a unipotent element u of $U(n, q^2)$ such that X(u) is equal to the p-part of the degree of X up to sign.

This will be proved in Section 2.