AN APPLICATION OF THE THEORY OF DESCENT TO THE $S \otimes_R S$ -MODULE STRUCTURE OF S/R-AZUMAYA ALGEBRAS

KENJI YOKOGAWA

(Received December 17, 1976) (Revised March 4, 1977)

Introduction. Let R be a commutative ring and S a commutative R-algebra which is a finitely generated faithful projective R-module. An R-Azumaya algebra A is called an S/R-Azumaya algebra if A contains S as a maximal commutative subalgebra and is left S-projective. S-S-bimodule structure (for which we shall call $S \otimes_R S$ -module structure) of S/R-Azumaya algebras is determined in [5] when S/R is a separable Galois extension and in [8] when S/R is a Hopf Galois extension, both are connected with one which is so called seven terms exact sequence due to Chase, Harrison and Rosenberg [3].

In this paper we shall investigate the $S \otimes_R S$ -module structure of S/R-Azumaya algebras assuming only that S is a finitely generated faithful projective R-module. So S/R-Azumaya algebras are not necessarily $S \otimes_R S$ -projective (c.f. [8] Th. 2.1). But in §1 we shall show for any S/R-Azumaya algebra A, there exists a unique finitely generated projective $S \otimes_R S$ -module P of rank one with certain cohomological properties such that A is $S \otimes_R S$ -isomorphic to $P \otimes_{S \otimes_R S} \operatorname{End}_R(S)$. In §2, we shall investigate S/R-Azumaya algebras resulting from Amitsur's 2-cocycles. Finally we shall deal with the seven terms exact sequence in §3.

Throughout R will be a fixed commutative ring with unit, a commutative R-algebra S is a finitely generated faithful projective as R-module, each \otimes , End, etc. is taken over R unless otherwise stated. Repeated tensor products of S are denoted by exponents, $S^q = S \otimes \cdots \otimes S$ with q-factors. We shall consider S^q as an S-algebra on first term. To indicate module structure, we write if necessary, $S_1 \otimes S_2$ instead of $S^2 = S \otimes S$, $s_1 M_{S_2}$ instead of $S^2 = S_1 \otimes S_2$ -module M etc.. $H^q(S/R, U)$ and $H^q(S/R, Pic)$ denote the q-th Amitsur's cohomology groups of the extension S/R with respect to the unit functor U and Picard group functor Pic respectively.

1. S/R-Azumaya algebras and $H^1(S/R, Pic)$

First we prove the following, which clarify the S^2 -module structure of