Soga, H. Osaka J. Math. 14 (1977), 537-555

DEGENERATE ELLIPTIC SYSTEMS OF PSEUDO-DIFFERENTIAL EQUATIONS AND NON-COERCIVE BOUNDARY VALUE PROBLEMS

HIDEO SOGA

(Received June 18, 1976)

0. Introduction

In the present paper we shall study a class of degenerate elliptic systems of pseudo-differential equations, and apply the results obtained there to noncoercive boundary value problems of fourth order.

One of typical examples of non-coercive problems is the oblique derivative problem: Let Ω be a bounded open set in \mathbf{R}^n with a smooth boundary Γ and consider the problem

(0.1)
$$\begin{cases} A(x, D_x)u = f \text{ in } \Omega, \\ \frac{\partial u}{\partial \nu} = g \text{ on } \Gamma, \end{cases}$$

where $A(x, D_x)$ is an elliptic differential operator of second order on $\overline{\Omega}$ and ν is a non-vanishing real vector field tangent to Γ on its submanifold Γ_0 . The behavior of ν near Γ_0 has a crucial effect on this problem (for details, see [5], [14], etc.). We shall consider in §4 a similar problem for an elliptic operator $L(x, D_x)$ of fourth order on $\overline{\Omega}$:

(0.2)
$$\begin{cases} L(x, D_x)u = f & \text{in } \Omega, \\ \frac{\partial^2 u}{\partial \nu_1 \partial n} = g_1 & \text{on } \Gamma, \\ \frac{\partial u}{\partial \nu_2} = g_2 & \text{on } \Gamma, \end{cases}$$

where ν_1 , ν_2 are vector fields of the same type as in (0.1). We study this problem by a usual method. Namely, let \mathcal{P} be the Poisson operator of the Dirichlet problem

$$\begin{cases} L(x, D_x)u = f & \text{in } \Omega, \\ D_n u = h_1 & \text{on } \Gamma, \\ u = h_2 & \text{on } \Gamma, \end{cases}$$