ON THE WEAKLY REGULAR p-BLOCKS WITH RESPECT TO $\boldsymbol{O}_{\boldsymbol{p}^{\prime}}(\mathbf{G})$

Yukio TSUSHIMA

(Received September 11, 1976)

1. Introduction

We begin with a consequence of a result of Fong ([3] Theorem 1. F.). Let G be a finite group and p a fixed prime number. If D is a defect group of an element of $\operatorname{Irr}\left(O_{p^{\prime}}(G)\right)$ (that is, D is an $S_{p^{\prime}}$-subgroup of the inertia group of an irreducible complex character of $O_{p^{\prime}}(G)$), then it is also a defect group of a p block of G. Furthermore, among those p-blocks that have defect group D, there exists a B which is weakly regular with respect to $O_{p^{\prime}}(G)$. That is, there exists a conjugate class C of G satisfying (1) $C \subset O_{p^{\prime}}(G)(2) C$ has a defect group D and (3) $\omega_{B}(\hat{C}) \neq 0 \bmod \mathfrak{p}$, where $\hat{C}=\sum_{x \in C} x$ (For the definition of the weak regularity, see Brauer [1]).

In this paper, we shall show if D is a defect group of an element of $O_{p^{\prime}}(G)$, then it is also a defect group of a p-block of G, which is weakly regular with respect to $O_{p^{\prime}}(G)$. As a corollary, we get if $O_{p^{\prime}}(G)$ has an element of p-defect d in G, then G has an irreducible character whose degree is divisible by p^{e-d}, where p^{e} is the p-part of the order of G. As an application of this fact, we shall study those solvable groups all of whose irreducible characters are divisible by p at most to the first power.

Notation. $\quad p$ is a fixed prime number. G is a finite group of order $|G|=$ $p^{e} g^{\prime},\left(p, g^{\prime}\right)=1 . G_{p}$ denotes an S_{p}-subgroup of $G . \operatorname{Irr}(G)$ denotes the set of all irreducible characters of G. We fix a prime divisor \mathfrak{p} of p in the ring of integers $\mathfrak{o}=Z[\varepsilon]$, where ε is a primitive $|G|$-th root of unity and we denote by k the residue class field $\mathfrak{o} / \mathfrak{p}$. If C is a conjugate class of G, then we denote by \hat{C} the sum $\sum_{x \in C} x$ in the group ring of G over the field under consideration. Let $F(G)$ denote the Fitting subgroup of G. If G is solvable, we have the normal series,

$$
G=F_{n} \supsetneq F_{n-1} \supseteqq \cdots \supseteqq F_{1} \supseteqq F_{0}=1, \quad \text { where } \quad F_{i} / F_{i-1}=F\left(G / F_{i-1}\right) .
$$

The number n is called the nilpotent length of G, which will be denoted by $n(G)$. Some other notations and terminologies which will be used in this paper will be found in Curtis and Reiner [2] or Gorenstein [5].

