Hiramine, Y. Osaka J. Math. 14 (1977), 453-463

ON MULTIPLY TRANSITIVE GROUPS

YUTAKA HIRAMINE

(Received June 18, 1976)

1. Introduction

The known 4-fold transitive groups are A_n $(n \ge 6)$, S_n $(n \ge 4)$, M_{11} , M_{12} , M_{23} and M_{24} . Let G be one of these and assume G is a $(4, \mu)$ -group on Ω with $\mu \ge 4$. Here we say that G is a (k, μ) -group on Ω if G is k-transitive on Ω and μ is the maximal number of fixed points of involutions in G. Let t be an involution in G with $|F(t)| = \mu$, then $G^{F(t)} = G(F(t))/G_{F(t)}$ is also a 4-fold transitive group. Here we set $F(t) = \{i \in \Omega \mid i^t = i\}$ and denote by G(F(t)), $G_{F(t)}$, the global, pointwise stabilizer of F(t) in G, respectively.

In this paper we shall prove the following

Theorem 1. Let G be a 4-fold transitive group on Ω . Assume that there exists an involution t in G satisfying the following conditions.

(i) G is a $(4, \mu)$ -group on Ω where $\mu = |F(t)|$.

(ii) $G^{F(t)}$ is a known 4-fold transitive group; A_n $(n \ge 6)$, S_n $(n \ge 4)$ or M_n (n=11, 12, 23 or 24).

Then G is also one of the known 4-fold transitive groups.

This theorem is a generalization of the Theorem of T. Oyama of [10]: the case that $G^{F(t)} \simeq A_n$ $(n \ge 6)$, S_n $(n \ge 4)$ or M_{12} has been proved by T. Oyama and the case that $G^{F(t)} \simeq M_{11}$, M_{23} or M_{24} by the author.

To consider the case that $G^{F(t)} \simeq M_{23}$ or M_{24} , we shall prove the following theorem in §3 and §4.

Theorem 2. Let G be a (1, 23)-group on Ω . If there exists an involution t such that |F(t)| = 23 and $G^{F(t)} \simeq M_{23}$. Then we have

(i) If P is a Sylow 2-subgroup of $G_{F(t)}$, then P is cyclic of order 2 and $N_{G}(P) \cap g^{-1}Pg \leq P$ for any $g \in G$.

(ii) $|\Omega| = 69$ and G is imprimitive on Ω .

(iii) $O(G) \neq 1$ and is an elementary abelian 3-group. If we denote by ψ the set of O(G)-orbits on Ω , then $|\psi| = 23$ and $G^{\psi} \simeq M_{23}$.

It follows from this theorem that there is no (3, 24)-group such that for an involution t fixing exactly twenty-four points $G^{F(t)} \simeq M_{24}$.