UNIRATIONAL QUASI-ELLIPTIC SURFACES IN CHARACTERISTIC 3

Dedicated to the memory of Taira Honda

Masayoshi MIYANISHI

(Received September, 1, 1975)
0. A non-singular projective surface X is called a quasi-elliptic surface if there exists a morphism $f: X \rightarrow C$, a curve, with almost all fibres irreducible singular rational curves E with $p_{a}(E)=1$ (cf. [4]). According to Tate [5], such surfaces can occur only in the case where the characteristic p of the ground field k is either 2 or 3 , and almost all fibres E have single ordinary cusps. Let be the function field of C. Then the generic fibre of f with the unique singular point taken off is an elliptic ${ }^{\text {t-form }}$ of the affine line \boldsymbol{A}^{1} (cf. [2], [3]); if this form has a \mathfrak{l}-rational point ${ }^{(*)}$ it is birational over \mathfrak{t} to one of the following affine plane curves:
(i) If $p=3, t^{2}=x^{3}+\gamma$ with $\gamma \in \mathfrak{f}-\mathfrak{t}^{3}$.
(ii) If $p=2, t^{2}=x^{3}+\beta x+\gamma$ with $\beta, \gamma \in \neq$
and $\beta \notin \mathscr{E}^{2}$ or $\gamma \notin \mathbb{E}^{2}$.
On the other hand, if X is unirational C must be a rational curve. Conversely if C is a rational curve X is unirational. Indeed, $k(X) \otimes_{\mathrm{t}} \mathrm{t}^{1 / 3}$ is rational over k in the first case, and $k(X) \otimes_{\mathrm{f}} \mathrm{t}^{1 / 2}$ is rational over k in the second case. In this article we consider a unirational quasi-elliptic surface with a rational crosssection only in characteristic 3 . Thus X is birational to a hypersurface $t^{2}=x^{3}$ $+\phi(y)$ in the affiine 3 -space \boldsymbol{A}^{3}, where $\phi(y) \in \boldsymbol{t}=k(y)$. If $\phi(y)$ is not a polynominal, write $\phi(y)=a(y) / b(y)$ with $a(y), b(y) \in k[y]$. Substituting t, x by $b(y)^{3} t$, $b(y)^{2} x$ respectively and replacing $\phi(y)$ with $b(y)^{5} a(y)$ we may assume that $\phi(y)$ $\in k[y]$. Moreover, after making suitable birational transformations we may assume that $\phi(y)$ has no monomial terms whose degree are congruent to 0 modulo 3 ; especially that $d=\operatorname{deg}_{y} \phi$ is prime to 3 . It is easy to see that under this assumption $f(x, y)=x^{3}+\phi(y)$ is irreducible.

A main result of this article is:
Theorem. Let k be an algebraically closed field of characteristic 3. Then
(*) This is equivalent to saying that f has a rational cross-section which is different from the section formed by the (movable) singular points of the fibres.

