Miyanishi, M. Osaka J. Math. 13 (1976), 513-522

UNIRATIONAL QUASI-ELLIPTIC SURFACES IN CHARACTERISTIC 3

Dedicated to the memory of Taira Honda

MASAYOSHI MIYANISHI

(Received September, 1, 1975)

0. A non-singular projective surface X is called a *quasi-elliptic* surface if there exists a morphism $f: X \to C$, a curve, with almost all fibres irreducible singular rational curves E with $p_a(E)=1$ (cf. [4]). According to Tate [5], such surfaces can occur only in the case where the characteristic p of the ground field k is either 2 or 3, and almost all fibres E have single ordinary cusps. Let \mathbf{t} be the function field of C. Then the generic fibre of f with the unique singular point taken off is an elliptic \mathbf{t} -form of the affine line A^1 (cf. [2], [3]); if this form has a \mathbf{t} -rational point^(*) it is birational over \mathbf{t} to one of the following affine plane curves:

- (i) If p=3, $t^2=x^3+\gamma$ with $\gamma \in t-t^3$.
- (ii) If p=2, $t^2=x^3+\beta x+\gamma$ with β , $\gamma \in t^2$ and $\beta \notin t^2$ or $\gamma \notin t^2$.

On the other hand, if X is unirational C must be a rational curve. Conversely if C is a rational curve X is unirational. Indeed, $k(X) \otimes_t t^{1/3}$ is rational over k in the first case, and $k(X) \otimes_t t^{1/2}$ is rational over k in the second case. In this article we consider a unirational quasi-elliptic surface with a rational cross-section only in characteristic 3. Thus X is birational to a hypersurface $t^2 = x^3 + \phi(y)$ in the affiine 3-space A^3 , where $\phi(y) \in t = k(y)$. If $\phi(y)$ is not a polynominal, write $\phi(y)=a(y)/b(y)$ with $a(y), b(y) \in k[y]$. Substituting t, x by $b(y)^3t$, $b(y)^2x$ respectively and replacing $\phi(y)$ with $b(y)^5a(y)$ we may assume that $\phi(y) \in k[y]$. Moreover, after making suitable birational transformations we may assume that $\phi(y)$ has no monomial terms whose degree are congruent to 0 modulo 3; especially that $d=\deg_y \phi$ is prime to 3. It is easy to see that under this assumption $f(x, y)=x^3+\phi(y)$ is irreducible.

A main result of this article is:

Theorem. Let k be an algebraically closed field of characteristic 3. Then

^(*) This is equivalent to saying that f has a rational cross-section which is different from the section formed by the (movable) singular points of the fibres.