# PROJECTIVE DIMENSION OF BROWN-PETERSON HOMOLOGY WITH MODULO ( $p, v_{1}, \cdots, v_{n-1}$ ) COEFFICIENTS 

Dedicated to the memory of Professor Taira Honda

## Zen-ichi YOSIMURA

(Received July 8, 1975)

Let $B P$ denote the Brown-Peterson spectrum for a fixed prime $p$. This spectrum gives us a multiplicative homology theory $B P_{*}()$ defined on the category of CW-spectra, with coefficient ring $B P_{*}=Z_{(p)}\left[v_{1}, \cdots, v_{n}, \cdots\right]$. Recall that the only invariant prime ideals of $B P_{*}$ are those of the form $I_{n}=\left(v_{0}, v_{1}, \cdots\right.$, $\left.v_{n-1}\right), 0 \leqq n \leqq \infty$, where we put $v_{0}=p$. Using Baas-Sullivan technique we can kill the generators $v_{0}, v_{1}, \cdots, v_{n-1}, v_{m+1}, v_{m+2}, \cdots$ of $B P_{*}$ to construct a homology theory $B P[n, m+1)_{*}(\quad)$ represented by a certain $B P$-module spectrum $B P[n, m+1)$, where $0 \leqq n \leqq m+1 \leqq \infty$. In particular $B P[n, \infty)$ is the Brown-Peterson spectrum with modulo $I_{n}$ coefficients, denoted by $P(n)$ [4]. According to Morava's geometric computation, $P(n)_{*}(X)$ becomes a module over the coherent ring $P(n)_{*}=B P_{*} / I_{n}$. Morava and also Johnson-Wilson[4] have obtained rich results concerned with the $B P$-module spectrum $P(n)$ and its operations.

Define hom $\operatorname{dim}_{P(n) *} M$ to be the projective dimension of $M$ as $P(n)_{*^{-}}$ module. Johnson-Wilson[3] gave completely satisfactory conditions under which hom $\operatorname{dim}_{B P_{*}} B P_{*}(\mathrm{X}) \leqq m$, where they assumed that $X$ is a based finite $C W$-complex. The proof was based on Wilson's splitting theorem. Later Landweber[7] introduced the category $\mathscr{B} \mathscr{P}_{0}$ of coherent comodules over $B P_{*}(B P)$ which has $B P_{*}(X)$ as object for every based finite $C W$-complex $X$. He then proved algebraically the result of Johnson-Wilson, applying two powerful tools called Filtration theorem and Exact functor theorem. The purpose of this note is to give the $P(n)_{*}(\quad)$-version of the result of JohnsonWilson without the finiteness assumption on $X$, i.e., the characterization of numerical invariant hom $\operatorname{dim}_{P(n) *} P(n)_{*}(X)$ for a connective $C W$-spectrum $X$ (Theorem 4.8). In the proof we will use Landweber's methods.

Let $X$ be a connective $C W$-spectrum. Using structure theorem of $P(n)^{*}(P(n))$ we can see easily that $P(n)_{*}$-modules $P(n)_{*}(X)$ become comodules over $B P_{*}(B P)$ when $n<2(p-1)$ (see [4, Remark 2.14]). But the author

