Minami, H. Osaka J. Math. 13 (1976), 271-287

K-GROUPS OF SYMMETRIC SPACES II

HARUO MINAMI

(Received May 19, 1975)

1. Introduction

Let M=G/K be a symmetric homogeneous space such that G is a simply connected compact Lie group. In [I] the author showed that the unitary K-group of M is isomorphic to the tensor product of $R(K) \bigotimes_{R(G)} Z$ and an exterior algebra E over Z, where R(G) and R(K) are the complex representation rights of G and K respectively, and in particular described the generators of E as an exterior algebra explicitly.

The purpose of this paper is to present a structure of $R(K) \underset{R(G)}{\otimes} Z$ as a group in the following nine cases:

Type of M = AIII, $BDI(a)(Spin(2p+2q+2)/Spin(2p+1) \cdot Spin(2q+1))$, BDII(b)(Spin(2n+1)/Spin(2n)), DIII, CII, EI, FI, FII or G.

Now let us denote by n(L) the order of the Weyl group of a compact connected Lie group L. We know that if U is a closed connected subgroup of G of maximal rank then $R(U) \underset{R(G)}{\otimes} Z$ is a free module of rank n(G)/n(U) and is isomorphic to $K^*(G/U)$ [12]. Throughout this paper we shall identify $R(U) \underset{R(G)}{\otimes} Z$ with the K-group of G/U in the above situation and denote by the same letter ρ the element of $K^*(G/U)$ defined by an element ρ of R(U) in the natural way. Furthermore we shall denote by Z(g) the free module generated by an element g.

2. Representation rings

In this section we recall the structure of the complex representation rings of classical groups.

Write ρ_n for the canonical representations $SU(n) \rightarrow U(n)$, $U(n) \rightarrow U(n)$, $Sp(n) \rightarrow U(2n)$ and $Spin(n) \rightarrow SO(n) \rightarrow U(n)$ for each *n*, and write $\lambda^i \rho_n$ for the *i*-th exterior product of ρ_n . According to [10] we have