Bannai, E. Osaka J. Math. 13 (1976), 123–129

ON MULTIPLY TRANSITIVE PERMUTATION GROUPS IV

EIICHI BANNAI*)

(Received February 12, 1975)

Introduction

By combining the results of Miyamoto [5] and Bannai [1, 2], we have obtained the following theorem ([2, Main Theorem]) which is an odd prime version of a theorem of M. Hall [3].

Theorem. Let p be an odd prime. Let G be a 2p-ply transitive permutation group such that $G_{1,2,\dots,2p}$ (=the pointwise stabilizer of 2p points) is of order prime to p. Then G is one of $S_n(2p \le n \le 3p-1)$ and $A_n(2p+2\le n\le 3p-1)$, where S_n and A_n denote the symmetric and alternating groups of degree n.

The purpose of this paper is to generalize the above theorem. Namely, we will prove the following theorem.

Theorem 1. Let p be an odd prime. Let G be a 2p-ply transitive permutation group such that either

- (i) each element in G of order p fixes at most 2p+(p-1) points, or
- (ii) a Sylow p subgroup of $G_{1,2,\dots,2p}$ is cyclic.

Then G is one of $S_n(2p \le n \le 4p-1)$ and $A_n(2p+2 \le n \le 4p-1)$.

Note that Theorem 1 (i) and Theorem 1 (ii) are some odd prime versions of a theorem of Nagao [6] and a theorem of Noda and Oyama [7] respectively. The essential part of the proof of Theorem 1 (i) is picked up as follows:

Theorem A. Let p be an odd prime. Then there exists no (p+3)-ply transitive permutation group G on a set $\Omega = \{1, 2, \dots, n\}$ which satisfies the following two conditions:

(1) a Sylow p subgroup $P(\pm 1)$ of $G_{1,2,\dots,P+3}$ fixes at most p-1 points in $\Omega - \{1, 2, \dots, p+3\}$, and P is semiregular on $\Omega - I(P)$, where I(P) denotes the set of the points which are fixed by any element of P. (2) $|\Omega - I(P)| \equiv p \pmod{p^2}$.

Note that Theorem A generalizes Lemma 1.5 in Miyamoto [5] to some

^{*)} Supported in part by the Sakkokai Foundation.