Endo, S. and Miyata, T. Osaka J. Math. 13 (1976), 109–122

ON THE PROJECTIVE CLASS GROUP OF FINITE GROUPS

Dedicated to Professor Kiiti Morita on his 60th birthday

SHIZUO ENDO AND TAKEHIKO MIYATA

(Received October 17, 1974) (Revised May 19, 1975)

In this paper we will continue the investigation of integral representations of finite groups done in [3], [4] and [5]. We will here be concerned mainly with the projective class group of nilpotent and symmetric groups.

Let Σ be a (finite dimensional) semi-simple Q-algebra and let Λ be a Z-order in Σ . We will mean by the projective class group of Λ the class group defined by using all locally free, projective Λ -modules and denote it by $C(\Lambda)$.

Let Π be a finite group. A finitely generated Z-free Π -module is briefly called a Π -module. A Π -module is called a permutation Π -module if it can be expressed as a direct sum of $\{Z\Pi/\Pi_i\}$ where each Π_i is a subgroup of Π . Further a Π -module M is called a quasi-permutation Π -module if there exists an exact sequence: $0 \rightarrow M \rightarrow S \rightarrow S' \rightarrow 0$ where S and S' are permutation Π -modules.

As is well known, the projective class group $C(Z\Pi)$ of the group algebra $Z\Pi$ can be written as follows:

 $C(Z\Pi) = \{ [\mathfrak{A}] - [Z\Pi] \mid \mathfrak{A}(\pm 0) \text{ is a projective ideal of } Z\Pi \} .$

We define the subgroups $\tilde{C}(Z\Pi)$, $C^{q}(Z\Pi)$ and $\tilde{C}^{q}(Z\Pi)$ of $C(Z\Pi)$ as follows:

 $\tilde{C}(Z\Pi) = \{ [\mathfrak{A}] - [Z\Pi] \in C(Z\Pi) \mid \mathfrak{A} \oplus X \simeq Z\Pi \oplus X \text{ for some } \Pi \text{-module } X \}, \\ C^{q}(Z\Pi) = \{ [\mathfrak{A}] - [Z\Pi] \in C(Z\Pi) \mid \mathfrak{A} \oplus S_{1} \simeq S_{2} \text{ for some permutation} \}$

 $\varPi\text{-modules }S_{\scriptscriptstyle 1} \text{ and } S_{\scriptscriptstyle 2} \}$,

 $\tilde{C}^{q}(Z\Pi) = \{ [\mathfrak{A}] - [Z\Pi] \in C(Z\Pi) \mid \mathfrak{A} \oplus S \cong Z\Pi \oplus S \text{ for some permutation } \Pi \text{-module } S \}.$

Let Ω_{Π} be a maximal Z-order in $Q\Pi$ containing $Z\Pi$ and let $\psi_{\Pi}: C(Z\Pi) \rightarrow C(\Omega_{\Pi})$ be the epimorphism induced by $\Omega_{\Pi \bigotimes_{Z\Pi}} \bullet$. Then the sequence $0 \rightarrow \tilde{C}(Z\Pi) \rightarrow C(Z\Pi) \xrightarrow{\psi_{\Pi}} C(\Omega_{\Pi}) \rightarrow 0$ is exact.

In [3] and [4] we raised the following problem: