Kametaka, Y. Osaka J. Math. 13 (1976), 11–66

ON THE NONLINEAR DIFFUSION EQUATION OF KOLMOGOROV-PETROVSKII-PISKUNOV TYPE

YOSHINORI KAMETAKA

(Received December 5, 1974)

CONTENTS

		Page
Intro	oduction	11
	Part I. Travelling waves	
1.	Existence, uniqueness and properties of the travelling wave	17
2.	KPP transform of the travelling wave	24
3.	Second existence theorem for the travelling wave	27
	Part II. Asymptotic behavior of the time dependent solution	
4.	Stability and instability criteria for $w_{\lambda}(x)$	28
5.	A problem with higher space dimension	38
6.	Second stability theorem	40
	Part III. Method of KPP transform	
7.	Fundamental theorem of KPP	41
8.	Stability of the slowest travelling wave	51
9.	Stability of the travelling wave with arbitrary speed	57
10.	An example	65
Refe	rences	66

Introduction

Kolmogorov, Petrovskii and Piskunov [1], whom we shall refer to as KPP, studied the initial value problem for a semilinear diffusion equation

(1)
$$\begin{cases} Lu = f(u), & 0 \le u \le 1 & (x, t) \in \mathbb{R}^1 \times (0, \infty), \\ u(x, 0) = u_0(x) & x \in \mathbb{R}^1, \\ \left(\text{where } L = \frac{\partial}{\partial t} - \left(\frac{\partial}{\partial x}\right)^2, & u = u(x, t), \end{cases}$$

under the conditions:

(i)
$$f(\xi) \in C^{\infty}[0, 1],$$

(ii)
$$f(0) = f(1) = 0, \quad f'(0) > 0 > f'(1),$$

(iii)
$$f(\xi) > 0, \quad f_0(\xi) \equiv f'(0)\xi - f(\xi) \ge 0 \quad \xi \in (0, 1).$$