FORMALLY SELF ADJOINTNESS FOR THE DIRAC OPERATOR ON HOMOGENEOUS SPACES

Akira IKEDA

(Received March 26, 1974)

Introduction. In [5], Wolf proved that the Dirac operator is essentially self adojoint over a Riemannian spin manifold M and he used it to give explicit realization of unitary representations of Lie groups.

Let K be a Lie group and α a Lie group homomorphism of K into $S O(n)$ which factors through Spin (n). He defined the Dirac operator on spinors with values in a certain vector bundle under the assumption that the Riemannian connection on the oriented orthonormal frame bundle P over M can be reduced to some principal K-bundle over M by the homomorphism α.

The purpose of this paper is to give the Dirac operator on a homogeneous space in a more general situation using an invariant connection, and to determine connections that define the formally self adjoint Dirac operator.

Let G be a unimodular Lie group and K a compact subgroup of G. We assume G / K has an invariant spin structure. First, we define the Dirac operator D on spinors using an invariant connection on the oriented orthonormal frame bundle P over G / K. Next, we introduce an invariant connection $\nabla^{C V}$ to a homogeneous vector bundle \mathcal{V} associated to a unitary representation of K, then we define the Dirac operator $D \hat{Q}_{\nabla V} 1$ on spinors with values in $C V$ according to [4]. As for a metric on spinors, we use a Lemma given by Parthasarathy in [3]. Using this metric and an invariant measure on G / K, we define a hermitian inner product on the space of spinors with values in \mathcal{V}. Then we determine connections that define the formally self adjoint Dirac operator with respect to this inner product. In some cases (cf. Remarks in 4), D $\hat{\otimes} 1$ is always formally self adjoint if an invariant connection on $C V$ is a metic connection. Moreover, in the same way as Wolf [3], we see that if $D \hat{\otimes} 1$ is formally ∇^{\sim}
self adjoint, then $D \hat{\nabla}^{\hat{Q}} 1$ and $\left(D \nabla_{\nabla^{\mathcal{V}}}^{\hat{Q}} 1\right)^{2}$ are essentially self adjoint.

1. Spin construction

Let \mathfrak{m} be an n-dimensional oriented real vector space with an inner product

