ELLIPTIC CURVES OF PRIME POWER CONDUCTOR WITH Q-RATIONAL POINTS OF FINITE ORDER

Isao MIYAWAKI

(Received August 4, 1972)

Introduction

Let \boldsymbol{E} be an elliptic curve (an abelian variety of dimension one) defined over the rational number field \boldsymbol{Q}. After Weil [9], we can define the conductor of \boldsymbol{E}. But, in general, it would be difficult to find all the curves of given conductor. But it seems to be easier to find all the curves of given conductor having \boldsymbol{Q}-rational points of finite order >2.

In this paper we determine all the curves of prime power conductor which have at least three rational points of finite order. There are only finitely many such curves up to \boldsymbol{Q}-isomorphism. They are listed in the table at the end of the paper.

Since each of them has \boldsymbol{Q}-rational points of finite order, we can take a special cubic equation as a global minimal model for it. Further, since that curve has a prime power conductor, the coefficients of that equation must be a solution of a certain diophantine equation. Therefore, the determination of such curves is reduced to elementary diophantine problems.

Some of them have no complex multiplication and non-integral invariants. Let \boldsymbol{E} be one of them and $\boldsymbol{Q}\left(\boldsymbol{E}_{n}\right)$ be the field generated by the coordinates of the n-division points of \boldsymbol{E} over \boldsymbol{Q}. Then we can determine the Galois group of $\boldsymbol{Q}\left(\boldsymbol{E}_{l}\right)$ over \boldsymbol{Q} for all prime l.

1. Integrality of rational points of finite order

Let \boldsymbol{E} be an elliptic curve defined over \boldsymbol{Q}. A Weierstrass model for \boldsymbol{E} over \boldsymbol{Q} is plane cubic equation of the form

$$
\begin{equation*}
y^{2}+a_{1} x y+a_{3} y+x^{3}+a_{2} x^{2}+a_{4} x+a_{6}=0 \tag{1}
\end{equation*}
$$

with $a_{j} \in \boldsymbol{Q}$, the zero of \boldsymbol{E} being the point at infinity. We define auxiliary quantities by

$$
\begin{aligned}
& \beta_{2}=a_{1}^{2}-4 a_{2} \\
& \beta_{4}=2 a_{4}-a_{1} a_{3}
\end{aligned}
$$

