Takahashi, Y. Osaka J. Math. 10 (1973), 175–184

ISOMORPHISMS OF β -AUTOMORPHISMS TO MARKOV AUTOMORPHISMS

Yōichirō TAKAHASHI

(Received February 9, 1972) (Revised July 21, 1972)

0. Introduction

The purpose of the present paper is to construct an isomorphism which shows the following:

Theorem. A β -automorphism is isomorphic to a mixing simple Markov automorphism in such a way that their futures are mutually isomorphic.

Though the state of this Markov automorphism is countable and not finite, we obtain immediately from the proof of the theorem:

Corollary 1. The invariant probability measure of β -transformation is unique under the condition that its metrical entropy coincides with topological entropy log β .

An extention of Ornstein's isomorphism theorem for countable generating partitions ([2]) shows the following known result (Smorodinsky [5], Ito-Takahashi [3]):

Corollary 2. A β -automorphism is Bernoulli.

We now give the definition of β -automorphism and auxiliary notions. Let β be a real number >1.

DEFINITION. A β -transformation is a transformation T_{β} of the unit interval [0, 1] into itself defined by the relation

(1)
$$T_{\beta}t \equiv \beta t \pmod{1} \quad (0 \leq t < 1)$$

and by $T^n_{\beta} l = \lim T^n_{\beta} t$.

This transformation has been studied by A. Renyi, W. Parry, Ito-Takahashi et al. Parry [3] showed that there is an invariant probability measure for a