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1. Introduction

In this paper we shall discuss the interpolation of operations on intermediate

spaces. Our method is the so-called real method. Our purpose is to treat the

critical case which appears in singular integral operators. If we consider for

example the Hubert transform / of function/ of the class L log+ //(di00,00), /
exist a.e. but the only local integrability holds. Then we shall discuss their inte-

gral estimation on the whole space.

The intermediate space between two Banach spaces was introduced by

W.A.J. Luxemburg [6, 7]. This is defined as follows. Given a topological vector

space V and two Banach spaces Al and A2 which are contained and con-

tinuously embedded in V. If /is an element of A{ (/=!, 2), we denote its norm

by I |/ 1 I [Af] (/=!, 2). We shall consider the space Al-\-A2 and introduce in
it the norm

I I/I \[At+AJ = »ι/(| \g\ |[Λ]+I \h\ \[A2])

where the infimum is taken over all pairs g£ΞAl and h^A2 such that f=g-\-h,
then Al-}-A2 also becomes a Banach space. Since A1 and A2 are continuously

embedded in V, it is evident that Aλ+A2 is also continuously embedded in V.

In what follows we shall consider totally σ-finite measure space (R, μ) and

the space V of equivalent classes of real valued measurable functions on R.

The equivalent relation here is that of coincidence almost everywhere. If in V

we introduce a topology of convergence in measure on sets of finite measure, V

becomes a topological vector space. If we take as the interpolation pair

A1=Lμ,9 A2=L^(l<p<°°) then these are continuously embedded in V. We

shall also consider another measure space (S, v).

Let us consider operation T which transforms measurable functions on R

to those on R. The operation T is called quasi-linear if

( i) 71(/ι+/2) is uniquely defined whenever Tfλ and Tf2 are defined and


