Urakawa, H. Osaka J. Math. 10 (1973), 93-113

RADIAL CONVERGENCE OF POISSON INTEGRALS ON SYMMETRIC BOUNDED DOMAINS OF TUBE TYPE

HAJIME URAKAWA

(Received March 10, 1972)

1. Introduction

Let $\mathcal{D} = \{z \in C; |z| < 1\}$ be the unit disc in C and $\mathcal{B} = \{e^{it}; -\pi \le t \le \pi\}$ the boundary of \mathcal{D} . For an integrable function f (In this note a function will always mean a complex valued function) on \mathcal{B} with respect to the normalized measure $\frac{1}{2\pi}dt$ on \mathcal{B} , we define the Poisson integral of f by

$$F(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) P(z, e^{it}) dt \quad \text{for} \quad z \in \mathcal{D}$$

where

$$P(re^{i\theta}, e^{it}) = \frac{1-r^2}{1-2r\cos(\theta-t)+r^2}$$
 for $0 \le r < 1$

and it is called the Poisson kernel of the unit disc \mathcal{D} . F is a C^{∞} -function on \mathcal{D} and it is harmonic on \mathcal{D} , that is $\Delta F=0$ for the Laplace-Beltrami operator Δ on C^{∞} -functions on \mathcal{D} with respect to the Poincaré metric on \mathcal{D} .

Then the classical Fatou's theorem asserts that for an integrable function f on \mathcal{B} ,

$$\lim_{r \to 1} F(re^{i\theta}) = f(e^{i\theta})$$

for almost every point $e^{i\theta}$ of \mathcal{B} with respect to the measure $\frac{1}{2\pi}d\theta$.

Now let G be any non-compact connected semi-simple Lie group with finite center, and let K be a maximal compact subgroup of G. Then the homogeneous space G/K is a symmetric space of non-compact type. Let g=t+p be the Cartan decomposition of the Lie algebra g of G with respect to the Lie algebra t of K. Let a be a maximal abelian subspace of p. Fix an order on a and let a^+ be the positive Weyl chamber of a with respect to this order. Let M be the centralizer of a in K. Then the homogeneous space K/M is the maximal boundary of G/K in the sense of Furstenberg [2]. Let μ be the normalized