Matumoto, T. Osaka J. Math. 10 (1973), 51-68

EQUIVARIANT COHOMOLOGY THEORIES ON G-CW COMPLEXES

ΤΑΚΑΟ ΜΑΤυΜΟΤΟ*

(Received December 10, 1971)

Introduction

G.Bredon developed the equivariant (generalized) cohomology theories in [3], in which he had to restrict himself to the case of finite groups. One of the purposes of this note is to generalize his theory by replacing G-complexes with G-CW complexes. Then, for example, the followings are still true for the case in which G is an arbitrary topological group. The E_2 -term of the Atiyah-Hirzebruch spectral sequence associated to a G-cohomology theroy (in this note we frequently use 'G-' instead of 'equivariant') is a classical G-cohomology theory, which is easy to calculate ($\S1 \sim \S4$). The G-obstruction theory works in a classical G-cohomology theory ($\S5$). Moreover, for a G-cohomology theory we get a representation theorem of E.Brown ($\S6$) and the Maunder's spectral sequence ($\S7$).

As an application we study the equivariant K^* -theory in the last sestion (§8). The Atiyah-Hirzebruch spectral sequence for $K^*_{\mathcal{C}}(X)$ collapses, if dim $X/G \leq 2$ or X satisfies some other conditions. The E_2 -term depends only on the orbit type decomposition of the orbit space, if X is a regular O(n)-manifold or the like. These facts enable us to calculate the equivariant K^* -group of Hirzebruch-Mayer O(n)-manifolds and Jänich knot O(n)-manifolds. Our spectral sequence for a differentiable G-manifold is similar to that of G.Segal which is defined by the equivariant nerve of his [13], but ours is easier to calculate the E_2 -term.

In this note G denotes a fixed topological group. Terminologies and notation follow those of [3], [9], [10] in general, though σ denotes a closed cell which is the closure of an (open) cell in the definition of a G-CW complex in [10]. And $G\sigma$ denotes the G-orbit of σ and H_{σ} the unique isotropy subgroup at any interior point of σ . §0 is exposed for reference to the properties of G-CW complexes.

The author wishes to thank Professors Shôrô Araki and Akio Hattori for their criticisms and encouragements.

^{*)} Supported in part by the Sakkokai Foundation.