STRUCTURE PRESERVING GROUP ACTIONS ON STABLY ALMOST COMPLEX MANIFOLDS

Robert E. STONG

(Received June 2, 1972)

1. Introduction

Conner and Floyd in [1, 2] introduced the notion of periodic maps preserving a complex structure, applying bordism methods quite successfully. In a discussion with Gary Hamrick it became apparent that a somewhat weaker notion was also quite plausible, and the object of this note is to analyze this weaker structure.

Being given a manifold with boundary V and a differentiable action $\phi: G \times V \rightarrow V$, with G a finite group, the differential $d \phi: G \times \tau(V) \rightarrow \tau(V)$ induces a G action on the tangent bundle to V. Being given a real representation $\theta: G \times W \rightarrow W$ of G on a vector space W, one may form a G-bundle $W \times V \xrightarrow{\boldsymbol{\pi}} V$, where G acts by $\theta \times \phi$ on $W \times V$. Then the Whitney sum of $\tau(V)$ and the bundle π has a G-action given by $d \phi$ and θ. Thinking of $E(\tau(V) \oplus \pi)$ as identified with $E(\tau(V)) \times W$, the action is $d \phi \times \theta$.

A bundle map $J: \tau(V) \oplus \pi \rightarrow \tau(V) \oplus \pi$ which covers the identity map on V and such that $J^{2}=-1$ in the fibers gives $\tau(V) \oplus \pi$ a complex structure and if J commutes with the G action $d \phi \times \theta, \tau(V) \oplus \pi$ becomes a complex G-bundle over V.

If $\psi: G \times T \rightarrow T$ is a complex representation of G one may form the bundle $\bar{\pi}: T \times V \rightarrow V$ with G action given by $\psi \times \phi$, and if $i: T \rightarrow T$ is the function with $i^{2}=-1$ giving the complex structure, $\tau(V) \oplus \pi \oplus \bar{\pi}$ is a complex G bundle if G acts by $d \phi \times \theta \times \psi$ and the complex structure is $J \times i$.

A stably almost complex structure on $\left(V^{\prime}, \phi\right)$ preserved by G would then be an equivalence class of systems (W, θ, J), where two $\operatorname{such}(W, \theta, J)$ and $\left(W^{\prime}, \theta^{\prime}, J^{\prime}\right)$ are equivalent if there are complex representations (T, ψ, i) and $\left(T^{\prime}, \psi^{\prime}, i^{\prime}\right)$ so that $\tau(V) \oplus \pi \oplus \bar{\pi}$ and $\tau(V) \oplus \pi^{\prime} \oplus \bar{\pi}^{\prime}$ are equivalent complex G-bundles.

The boundary of V inherits a stably almost complex structure preserved by G for $\left.\tau(\partial V) \cong \tau(V)\right|_{\partial V} \oplus 1$ as G-bundles, where 1 is the trivial line bundle coming from the trivial representation of G.

It is clear that this differs from the Conner-Floyd approach in which (W, θ) and (T, ψ) are restricted to be trivial representations.

