STRUCTURE PRESERVING GROUP ACTIONS ON STABLY ALMOST COMPLEX MANIFOLDS

ROBERT E. STONG

(Received June 2, 1972)

1. Introduction

Conner and Floyd in [1, 2] introduced the notion of periodic maps preserving a complex structure, applying bordism methods quite successfully. In a discussion with Gary Hamrick it became apparent that a somewhat weaker notion was also quite plausible, and the object of this note is to analyze this weaker structure.

Being given a manifold with boundary V and a differentiable action $\phi: G \times V \to V$, with G a finite group, the differential $d\phi: G \times \tau(V) \to \tau(V)$ induces a G action on the tangent bundle to V. Being given a real representation $\theta: G \times W \to W$ of G on a vector space W, one may form a G-bundle $W \times V \xrightarrow{\pi} V$, where G acts by $\theta \times \phi$ on $W \times V$. Then the Whitney sum of $\tau(V)$ and the bundle π has a G-action given by $d\phi$ and θ . Thinking of $E(\tau(V) \oplus \pi)$ as identified with $E(\tau(V)) \times W$, the action is $d\phi \times \theta$.

A bundle map $J: \tau(V) \oplus \pi \to \tau(V) \oplus \pi$ which covers the identity map on Vand such that $J^2 = -1$ in the fibers gives $\tau(V) \oplus \pi$ a complex structure and if Jcommutes with the G action $d\phi \times \theta$, $\tau(V) \oplus \pi$ becomes a complex G-bundle over V.

If $\psi: G \times T \to T$ is a complex representation of G one may form the bundle $\pi: T \times V \to V$ with G action given by $\psi \times \phi$, and if $i: T \to T$ is the function with $i^2 = -1$ giving the complex structure, $\tau(V) \oplus \pi \oplus \overline{\pi}$ is a complex G bundle if G acts by $d\phi \times \phi \times \psi$ and the complex structure is $J \times i$.

A stably almost complex structure on (V, ϕ) preserved by G would then be an equivalence class of systems (W, θ, J) , where two such (W, θ, J) and (W', θ', J') are equivalent if there are complex representations (T, ψ, i) and (T', ψ', i') so that $\tau(V) \oplus \pi \oplus \pi$ and $\tau(V) \oplus \pi' \oplus \pi'$ are equivalent complex G-bundles.

The boundary of V inherits a stably almost complex structure preserved by G for $\tau(\partial V) \approx \tau(V)|_{\partial V} \oplus 1$ as G-bundles, where 1 is the trivial line bundle coming from the trivial representation of G.

It is clear that this differs from the Conner-Floyd approach in which (W, θ) and (T, ψ) are restricted to be trivial representations.