Ichiraku, S. Osaka J. Math. 9 (1972), 159-164

ON REALIZATION OF KIRBY-SIEBENMANN'S OBSTRUCTIONS BY 6-MANIFOLDS

SHIGEO ICHIRAKU

(Received May 10, 1971)

1. Introduction

Let M^n be a closed topological manifold. By Kirby-Siebenmann ([5], [6]), an obstruction to triangulate M^n is defined as an element of $H^4(M^n : \mathbb{Z}_2)$, provided $n \ge 5$. We will denote this obstruction by k(M). In this paper, we will consider the following problem.

Problem. Let M_0^n be a closed *PL* manifold. For a given non-zero element $\eta \in H^4(M_0^n : Z_2)$, do there exist a nontriangulable manifold M^n and a homotopy equivalence $f: M_0^n \to M^n$ such that $f^*k(M^n) = \eta$? Here, $f^*: H^4(M^n : Z_2) \to H^4(M_0^n : Z_2)$ is the isomorphism induced by f.

Since there exists a non-triangulable manifold M^6 which is homotopy equivalent to $S^4 \times S^2$ ([5], Introduction p.v), this problem for $M_0^n = S^4 \times S^2$ has an affirmative answer. In some cases, however, the problem has a negative answer. For example, Dr. S. Fukuhara has proved the following ([3]); let M^5 be a closed (possibly non-triangulable) topological manifold which is homotopy equivalent to $S^4 \times S^1$, then M^5 is really homeomorphic to $S^4 \times S^1$.

When M_0^6 is a closed manifold with $\pi_1(M_0^6)$ is free and $H^3(M_0^6:Z_2)=0$, the problem will be answered affirmatively. And the problem for $M_0^n=S^4\times S^{n-4}$ will be solved, provided $n \ge 9$. (See Corollary 2.)

The method of this paper can be found in [5] and [9]. The author wishes to express his hearty thanks to Professor K. Kawakubo who showed him a construction of non-triangulable manifold having the homotopy type of CP^3 .

2. Six-dimensional case

In dimension six, our results are as follow.

Theorem 1. Let M_0^6 be a closed PL 6-manifold with $H^s(M_0^6:Z_2)=0$ and η a non-zero element of $H^4(M_0^6:Z_2)$ whose Poincaré dual $\overline{\eta}$ is spherical. Then there exist a non-triangulable manifold M^6 and a homotopy equivalence $f: M_0^6 \to M^6$ such that $f^*k(M)=\eta$, where $f^*: H^4(M^6:Z_2) \to H^4(M_0^6:Z_2)$ is the isomorphism