ON THE SPACES OF GENERALIZED CURVATURE TENSOR FIELDS AND SECOND FUNDAMENTAL FORMS

Katsumi NOMIZU

(Received October 12, 1970)

For a Riemannian manifold M let $\mathfrak{X}(M)$ be the vector space of all tensor fields A of type $(1,1)$ that satisfy the following three conditions: (1) A is symmetric as an endomorphism of each tangent space $T_{x}(M), x \in M$; (2) Codazzi's equation holds, that is, $\left(\nabla_{X} A\right) Y=\left(\nabla_{Y} A\right)(X)$ for all vector fields X and Y; (3) trace A is constant on M. It is hardly necessary to note that an isometric immersion of M into a space of constant sectional curvature as a hypersurface with constant mean curvature gives rise to such a tensor field A (namely, the second fundamental form), which furthermore satisfies the equation of Gauss. Now Y. Matsushima has shown (unpublished) that if M is a compact Riemannian manifold, then $\mathfrak{U}(M)$ is finite-dimensional. This is obtained as an application of the theory of vector bundle-valued harmonic forms (see [2] for other applications to the study of isometric immersions).

The purpose of the present paper is to prove two results (Theorems 1 and 2) of a similar nature. Theorem 1 generalizes the above result of Matsushima to the space of generalized second fundamental forms, which, geometrically, arise from isometric immersions of higher codimension. Theorem 2 shows finite-dimensionality of the space of generalized curvature tensor fields, which, as a matter of fact, implies the above result of Matsushima as we show in [3].

1. Forms with values in a Riemannian vector bundle

By a Riemannian vector bundle we shall mean a (real) vector bundle E over a Riemannian manifold M which has a fiber metric and a mtric connection ([1], Vol. I. pp. 116-7). The Riemannian metric on M and the fiber metric in E are denoted by \langle,$\rangle , whereas the Riemannian connection on M$ is denoted by ∇ and the metric connection in E by ∇^{\prime}. If φ and ψ are sections of E and X is a vector field on M, then

$$
\mathrm{X}\langle\varphi, \psi\rangle=\left\langle\nabla_{X}^{\prime} \varphi, \psi\right\rangle+\left\langle\varphi, \nabla_{X}^{\prime} \psi\right\rangle .
$$

