Katayama, S. and Terasaka, H. Osaka J. Math.

ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, I

Shigeru KATAYAMA and Hidetaka TERASAKA

(Received September 2, 1966)

1. Introduction

In connection with the axioms of congruence of segments on a straight line given in Hilbert's Grundlagen der Geometrie, we will set up a group of axioms of congruence on a linearly ordered space and study their mutual dependency and independency.

In the following let L be a linearly ordered space, that is a set of points, in which for any pair of distinct points A and B either of the relations $A<B$ and $B<A$ holds, and for any three points A, B and C, if $A<B$ and $B<C$ then $A<C$.

When we write $A B$, it will be understood that A and B are distinct points of L such that $A<B$. $A B$ will be called a segment. We write $A C \equiv A B+B C$ if and only if $A<B<C$.

The axioms we are going to study is the following:
Axiom E (Unique Existence): $\forall A B \forall A^{\prime} \exists_{1} B^{\prime}: A B=A^{\prime} B^{\prime}$, that is, for any segment $A B$ and for any point A^{\prime} there is one and only one point B^{\prime} such that

$$
A B=A^{\prime} B^{\prime}
$$

Axiom R (Reflexivity): $\quad A B=A B$.
Axiom S (Symmetricity): $A B=A^{\prime} B^{\prime} \Rightarrow A^{\prime} B^{\prime}=A B$.
Axiom T (Transitivity): $A B=A^{\prime} B^{\prime}, A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime} \Rightarrow A B=A^{\prime \prime} B^{\prime \prime}$.
Axiom A (Additivity):

$$
A C \equiv A B+B C, A^{\prime} C^{\prime} \equiv A^{\prime} B^{\prime}+B^{\prime} C^{\prime}, A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime} \Rightarrow A C=A^{\prime} C^{\prime} .
$$

The following scheme will be used in application:

