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A Singular Non-Linear Equation

By W. FuLKSυ and J. S. MAYBEE2'

1. Introduction

To begin with, we wish to illustrate the physical problem which
leads to the following mathematical work.

Let R be a region of three dimensional space occupied by an electrical
conductor. Then each point in R becomes a source of heat as a current
is passed through R. Let u(xy t) be the temperature at the point x e R
and at time ty and suppose that a function E(x, t) which describes the
local voltage drop in R is given as a function of position and time.
Then if σ(u) is the electrical resistivity which is, in general, a function
of the temperature u, the rate of generation of heat at any point x at
time t is E2(x, t)/σ (u). Let c and K be the specific heat and thermal
conductivity of R, respectively, which we take to be constant. Then the
temperature satisfies the equation,

cut — κΔu = E2(x, t)/σ(u) ,

in the simplest case σ(u) = oίu where a is a positive constant. More
generally σ can be assumed to be a positive function of u which is
increasing with u and which tends to zero with u. Thus the differential
equation is singular in the sense that the right hand side becomes
unbounded at u = 0.

This physical problem leads naturally then to the study of the
differential equation

ut-Δu = F(x, t, u)

where Δ is the Laplace operator in EN. We will write Hu = ut — Δu and
call H the heat operator. Our equation then becomes

( 1 ) Hu = F(xy t, u) .
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