On Knots and Periodic Transformations ${ }^{1)}$

By Shin'ichi Kinoshita

Introduction

Let T be a homeomorphism of the 2 -sphere S^{2} onto itself. If T is regulat ${ }^{2)}$ except at a finite number of points, then it is proved by B.v. Kerékjártó [11] that T is topologically equivalent to a linear transformation of complex numbers. Now let T be a homeomorphism of the 3 -sphere S^{3} onto itself. If T is regular except at a finite number of points, then it is known ${ }^{3}$ that the number of points at which T is not regular is at most two. Furthermore it is also known ${ }^{4)}$ that if T is regular except at just two points, then T is topologically equivalent to the dilatation of S^{3}. Let T be sense preserving and regular except at just one point. Then whether or not T is equivalent to the translation of S^{3} is not proved yet ${ }^{5}$. Now let T be regular at every point of S^{3}. In general, in this case, T can be more complicated ${ }^{6)}$ and there remain difficult problems ${ }^{77}$.

In this paper we shall be concerned with sense preserving periodic transformations of S^{3} onto itself, which is a special case of regular transformations of S^{3}. Furthermore suppose that T is different from the identity and has at least one fixed point. Then it has been shown by P. A. Smith [19] that the set F of all fixed points of T is a simple closed curve. It is proved by D. Montgomery and L. Zippin [13] that generally T is not equivalent to the rotation of S^{3} about F. It will naturally be conjectured ${ }^{8)}$ that if T is semilinear, then T is equivalent to the rotation of S^{3}. In this case F is, of course, a polygonal simple

[^0]
[^0]: 1) A part of this paper was published in [12]. See also the footnote 11).
 2) A homeomorphism T of a metric space X onto itself is called regular at $p \in X$, if for each $\varepsilon>0$ there exists $\delta>0$ such that if $d(p, x)<\delta$, then $d\left(T^{n}(p), T^{n}(x)\right)<\varepsilon$ for every integer n.
 3) See T. Homma and S. Kinoshita [9].
 4) See T. Homma and S. Kinoshita [8] [9].
 5) See also H. Terasaka [21].
 6) See R. H. Bing [3] D. Montgomery and L. Zippin [13].
 7) See, for instance, [4] Problem 40.
 8) See D. Montgomery and H. Samelson [14].
