Kernel Functions of Diffusion Equations (I)

By Hidehiko YAMABE

Let D be an open bounded set in a d-dimensional Euclidean space \mathcal{E} .

By Δ we understand the Laplacian with respect to given coordinates. Consider the diffusion equation

(1)
$$\frac{\partial U}{\partial t} = \Delta U$$

on D. By a *kernel function* K(x, y; t) we understand a function on $\mathcal{E} \times \mathcal{E} \times [0, \infty)$ satisfying following properties:

(i) K(x, y; t) = 0 when either x or y is on the boundary of D, if K(x, y; t) is continuous on boundary for a fixed t, or the boundary ∂D is smooth.

(ii) For a fixed y

(2)
$$\frac{\partial}{\partial t} K(x, y; t) = \Delta_x K(x, y; t)$$

where Δ_x is understood as the Laplacian on the variable x.

The purpose of this paper is to give a new way of constructing the kernel function on D which coincides with the Green's function when ∂D , the boundary of D is smooth.

In preparations we shall define some notations. Coordinates of points x, y, \cdots on \mathcal{E} will be written x^i ; $1 \leq i \leq d, y^j$; $1 \leq j \leq d$, etc. The euclidean distance between two points x and y is denoted by

(3)
$$|x-y| = (\sum_{i}^{d} (x^{i}-y^{i})^{2})^{1/2}.$$

Let

(4)
$$E_t(x, y) = (2\sqrt{\pi t})^{-d} \exp\left(-(4t)^{-1}|x-y|^2\right).$$

Lemma 1. Take a point x on D. Let S(h) be a solid sphere around

(2), see (8)

^{(1),} see (15) and (8)