Osaka Mathematical Journal Vol. 6, No. 2, December, 1954.

On Principally Linear Elliptic Differential Equations of the Second Order.

By Mitio NAGUMO

§0 Introduction

We use the notations $\partial_{x_i} u$ or $\partial_{i} u$ for $\frac{\partial u}{\partial x_i}$ and $\sum_{x_i x_j} u$ or $\partial_{ij}^2 u$ for $\frac{\partial^2 u}{\partial x_i \partial x_j}$. We write x for x_1, \dots, x_m , $\partial_x u$ for $\partial_{x_1} \dots \partial_x u$, and $\partial_x^2 u$ for $\partial_{ij}^2 u$ $(i, j = 1, \dots, m)$.

In this note we shall consider principally linear partial differential equation¹⁾ of elliptic type

$$(0) \qquad \qquad \sum_{i,j=1}^m a_{ij}(x) \frac{\partial^2 u}{\partial i_j} = f(x, u, \frac{\partial u}{\partial x}).$$

We assume once for all that the quadratic form $\sum_{i, j=1}^{m} a_{ij}(x) \xi_i \xi_j$ is positive definite. We denote by C[A] the set of all continuous functions on A, and by $C^p[A]$ the set of all functions whose partial derivatives up to the *p*-th order are all continuous on A. Under a solution of (0) in the domain D we understand a function of $C^2[D]$ which satisfies (0) for $x \in D^{(2)}$. We say that a solution u(x) of (0) in D takes the boundary value $\beta(x)$, when $u(x) \in C[\overline{D}]$ and $u(x) = \beta(x)$ for $x \in D^{(3)}$.

We say a function $\omega(x)$ is a quasi-supersolution (-subsolution) of (0) in a domain D, if for every point $x_0 \in D$, there exist a neighborhood U of x_0 and a finite number of functions $\omega_{\nu}(x) \in C^2[U]$ ($\nu = 1, \dots, n$) such that

(0.1)
$$\omega(x) = \underset{1 \le \nu \le n}{\operatorname{Min}} \omega_{\nu}(x) \quad (\underset{1 \le \nu \le n}{\operatorname{Max}} \omega_{\nu}(x)) \quad \text{for} \quad x \in U$$

and

$$(0.2) \qquad \sum_{i, j=1}^{n} a_{ij}(x) \partial_{ij}^{2} \omega_{\nu} \leq f(x, \omega_{\nu}, \partial_{x} \omega_{\nu}) (\geq f(x, \omega_{\nu}, \partial_{x} \omega_{\nu})).$$

¹⁾ We say that a partial differential equation is principally linear, if it is linear in the terms of the highest derivatives with coefficients containing only independent variables.

²⁾ D is a connected open set in the *m*-dimensional Euclidean space.

³⁾ \overline{D} means the closure of D, and \dot{D} the boundary of D.