On an Arcwise Connected Subgroup of a Lie Group

By Hidehiko Yamabe

It was recently proved that an arcwise connected subgroup of a Lie group is a Lie subgroup 1). In this note a direct proof for it will be given.

Let A be an arcwise connected subgroup of an r-dimensional Lie group with the Lie algebra l, and we denote U_k a system of neighbourhoods of the identity e such that

and by C_k the arcwise connected component of e in $U_k \cap A$.

We consider the directions e, a_k for $a_k \in C_k$, which converge to a limit direction Δ for a suitable sequence $\{a_k\}$. Let us denote by $X(\Delta)$ one of the corresponding infinitesimal transformations to Δ and by \mathfrak{G} the aggregate of $X(\Delta)$'s.

For a one parameter subgroup $H_x = \{x \; ; \; x = \exp \tau \; X, \; -1 \leq \tau \leq 1\}$ for $X \in \mathfrak{G}$, there exists a sequence $\{a_k\}$ so that e, a_k converge to the direction corresponding to X. That is for an arbitrarily small neighbourhood V^z) of e, there exist a pair of integers k and m^3) such that

$$(a_k)^j \subset H_x \cdot V$$
, $(a_k)^m \in (\exp X) \cdot V$,

where $-m \le j \le m$., Put $(a_k)^m = b(1)$ and $(a_k)^{-m} = b(-1)$. Now let us denote by γ_k the continuous curve which is drawn from e to a_k in U_k . Then it is possible to join b(1) and b(-1) by $\Gamma_x = \{(a_x)^j \gamma_k, -m \le j \le m\}$ in such a way that $\Gamma_x \subset H_x \cdot V$. Moreover we can introduce a parameter τ such that

$$\Gamma_x = \{b(\tau), -1 \le \tau \le 1\}, b(\tau) \in (\exp \tau X) \cdot V.$$

¹⁾ This theorm was proved by Iwamura, Hayashida, Minagawa and Homma when the Lie group is a vector group and by Kuranishi when it is semi-simple. Kuranishi, using the above results, proved it for the general case, but the author obtained independently the present proof.

²⁾ In this paper V or V^\prime denotes arbitrarily or sufficiently small neighbourhood of the identity.

³⁾ m depends upon a_k and X.