ON MANIFOLDS WITH TRIVIAL LOGARITHMIC TANGENT BUNDLE

Jörg WINKELMANN

(Received November 7, 2002)

1. Introduction

By a classical result of Wang [15] a connected compact complex manifold X has holomorphically trivial tangent bundle if and only if there is a connected complex Lie group G and a discrete subgroup Γ such that X is biholomorphic to the quotient manifold G / Γ. In particular X is homogeneous. If X is Kähler, G must be commutative and the quotient manifold G / Γ is a compact complex torus.

The purpose of this note is to generalize this result to the non-compact Kähler case. Evidently, for arbitrary non-compact complex manifold such a result can not hold. For instance, every domain over \mathbb{C}^{n} has trivial tangent bundle, but many domains have no automorphisms.

So we consider the "open case" in the sense of Iitaka ([7]), i.e. we consider manifolds which can be compactified by adding a divisor.

Following a suggestion of the referee, instead of only considering Kähler manifolds we consider manifolds in class \mathcal{C} as introduced in [5]. A compact complex manifold X is said to be class in \mathcal{C} if there is a surjective holomorphic map from a compact Kähler manifold onto X. Equivalently, X is bimeromorphic to a Kähler manifold ([14]). For example, every Moishezon manifold is in class \mathcal{C}.

We obtain the following characterization:
Main Theorem. Let \bar{X} be a connected compact complex manifold, D a closed analytic subset and $X=\bar{X} \backslash D$. Assume that \bar{X} is in class \mathcal{C} as introduced in [5] (also called "weakly Kähler").

Then the following conditions are equivalent:
(1) D is a divisor which is locally s.n.c. (see definitions in $\S 2$ below) and the logarithmic tangent bundle $T(-\log D)$ is a holomorphically trivial vector bundle on \bar{X}.
(2) There is a complex semi-torus G acting effectively on \bar{X} with X as open orbit such that the all the isotropy groups are themselves semi-tori.

Moreover, if one (hence both) of these conditions are fulfilled, then D is

[^0]
[^0]: 1991 Mathematics Subject Classification : 32J27, 32M12, 14L30, 14M25.

