KNOTTED KLEIN BOTTLES WITH ONLY DOUBLE POINTS

Акіко SHIMA

(Received September 27, 1999)

1. Introduction

If an embedded 2-sphere in 4 -space \mathbf{R}^{4} has the singular set of the projection in 3 -space \mathbf{R}^{3} consisting of double points, then the 2 -sphere is ambient isotopic to a ribbon 2-sphere (see [19]). Similarly, if an embedded torus in \mathbf{R}^{4} has the singular set of the projection in \mathbf{R}^{3} consisting only of double points, then the torus is ambient isotopic to either a ribbon torus or a torus obtained from a symmetry-spun torus by m-fusion (see [15]). In this paper we will show a similar theorem for an embedded Klein bottle in \mathbf{R}^{4}. The following is the main results in this paper.

Theorem 1.1. Let F be an embedded Klein bottle in \mathbf{R}^{4}. If the singular set $\Gamma^{*}(F)$ of the projection of F in \mathbf{R}^{3} consists only of double points, then F is ambient isotopic to either a ribbon Klein bottle or a Klein bottle obtained from a spun Klein bottle by m-fusion.

Corollary 1.2. Let F be an embedded Klein bottle in \mathbf{R}^{4}. Suppose that the singular set $\Gamma^{*}(F)$ of the projection of F in \mathbf{R}^{3} consists of double points, and every component of the singular set $\Gamma(F)$ on F is not homotopic to zero. If the fundamental group of the complement of F is isomorphic to \mathbf{Z}_{2}, then F is trivial, i.e., F bounds a solid Klein bottle in \mathbf{R}^{4}.

Let F be an oriented closed surface in \mathbf{R}^{4}. Is F trivial if the fundamental group of the complement of F is isomorphic to \mathbf{Z} ? In the topological category, the question is affirmatively soloved when if it is a 2 -sphere (see [3]). In the PL or smooth category, this is an open question, it is affirmatively soloved when F is one of the following:
(i) F is a 1 -fusion ribbon 2-knot ([8]).
(ii) F is a 2 -sphere with four critical points ([11]).
(iii) F is a symmetry-spun torus ([17]).
(iv) F is a torus whose singular set on the torus consists only of disjoint simple closed curves with non-homotopic to zero in the torus ([15]).

All homology groups are taken with coefficients in \mathbf{Z}, and all submanifolds are

[^0]
[^0]: 2000 Mathematics Subject Classification : Primary 57Q45; Secondary 57Q35.

