Kadowaki, M. Osaka J. Math. **40** (2003), 245–270

ON A FRAMEWORK OF SCATTERING FOR DISSIPATIVE SYSTEMS

MITSUTERU KADOWAKI

(Received September 5, 2001)

1. Introduction

In this paper we study the existence of scattering solutions for some dissipative systems which contain elastic wave with dissipative boundary conditions in a half space of \mathbf{R}^3 (cf. Dermenjian-Guillot [1]). First we give a framework based on the idea of Simon [18] and apply it to elastic wave mentioned above. In applying the abstract framework, we shall use the Mellin transformation (cf. Perry [14]) as a key tool.

Let \mathcal{H} be separable Hilbert space with inner $\langle \cdot, \cdot \rangle_{\mathcal{H}}$. The norm is denoted by $\|\cdot\|_{\mathcal{H}}$. Let $\{V(t)\}_{t\geq 0}$ and $\{U_0(t)\}_{t\in \mathbb{R}}$ be a contraction semi- group in \mathcal{H} and a unitary group in \mathcal{H}_0 , respectively. We denote the generator of V(t) and $U_0(t)$ by A and A_0 , respectively $(V(t) = e^{-itA}$ and $U_0(t) = e^{-itA_0})$. We make the following assumptions on A and A_0 .

(A1) $\sigma(A_0) = \sigma_{ac}(A_0) = \mathbf{R} \text{ or } [0, \infty).$

(A2) $(A-i)^{-1} - (A_0 - i)^{-1}$ defined as a form is extended to a compact operator K in \mathcal{H} .

(A3) There exist non-zero projection operators in \mathcal{H} , P_+ and P_- , such that $P_+ + P_- = I_d$ and

(A3.1)
$$\int_0^\infty \|KU_0(t)\psi(A_0)P_+\|\,dt<\infty,$$

(A3.2)
$$\int_0^\infty \|K^* U_0(t)\psi(A_0)P_+\|\,dt < \infty,$$

(A3.3)
$$\int_0^\infty \|K^* U_0(-t)\psi(A_0)P_-\|\,dt < \infty,$$

(A3.4)
$$w - \lim_{t \to +\infty} U_0(-t)\psi(A_0)P_-f_t = 0,$$

for each $\psi \in C_0^{\infty}(\mathbb{R}\setminus 0)$ and $\{f_t\}_{t\in\mathbb{R}}$ satisfying $\sup_{t\in\mathbb{R}} \|f_t\|_{\mathcal{H}} < \infty$, where $\|\cdot\|$ is the operator norm of bounded operators in \mathcal{H} .

(A3.1), (A3.3) and (A3.4) will imply the existence of the wave operator. It will follow from (A3.2) that the wave operator is not zero as an operator in \mathcal{H} . The framework of [18] is due to Enss's method [2]. In order to cheak the applicability of the framework of [18] to dissipative systems (see also Stefanov-Georgiev [20] or [15]), we