ON HAEFLIGER'S OBSTRUCTIONS TO EMBEDDINGS AND TRANSFER MAPS

Dedicated to the memory of Professor Katsuo Kawakubo

YOSHIYUKI KURAMOTO and TSUTOMU YASUI

(Received May 17, 2001)

1. Introduction and statement of results

Throughout this article, n-manifolds mean compact differentiable (or topological) manifolds of dimension n. The (co-)homology is understood to have \mathbb{Z}_2 for coefficients.

For a manifold V, we denote by w(V) and $\bar{w}(V) (= w(V)^{-1})$, the total Stiefel-Whitney class and the total normal Stiefel-Whitney class of V, respectively. Furthermore, we denote by $U_V \in H^{\dim V}(V \times V)$ the \mathbb{Z}_2 -Thom class (or \mathbb{Z}_2 -diagonal cohomology class) of V [10, p. 125]. For a (continuous) map $f \colon M^n \to N^{n+k}$ between closed manifolds M and N, we define the total Stiefel-Whitney class $w(f) = \sum_{i \geq 0} w_i(f)$ by the equation

$$w(f) = \bar{w}(M) f^* w(N)$$
.

For a map $f: M^n \to N^{n+k}$, the transfer map (or Umkehr homomorphism) $f_!: H^i(M) \to H^{i+k}(N)$ is defined by the commutative diagram below:

$$H^{i}(M) \xrightarrow{f_{!}} H^{i+k}(N)$$

$$\cong \downarrow \cap [M] \qquad \cong \downarrow \cap [N]$$
 $H_{n-i}(M) \xrightarrow{f_{*}} H_{n-i}(N).$

Here $[V] \in H_{\dim V}(V)$ denotes the fundamental homology class of a manifold V. Our main theorem is the following

Theorem 1.1. For a continuous map $f: M^n \to N^{n+k}$ between closed topological manifolds, $U_M(1 \times w_k(f)) + (f \times f)^*U_N = 0$ if and only if $f^*f_!(a) = aw_k(f)$ for all $a \in H^*(M)$.

The cohomology elements, appearing in this theorem, are related to the embeddability of f. A. Haefliger [7, Théorèm 5.2] proved the following