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1. Introduction and statement of results

Throughout this article, -manifolds mean compact differentiable (or topological)
manifolds of dimension . The (co-)homology is understood tohave Z2 for coeffi-
cients.

For a manifold , we denote by ( ) and ¯ ( ) (= ( )−1), the total Stiefel-
Whitney class and the total normal Stiefel-Whitney class of, respectively. Further-
more, we denote by ∈ dim ( × ) the Z2-Thom class (orZ2-diagonal cohomol-
ogy class) of [10, p. 125]. For a (continuous) map : → + between closed
manifolds and , we define the total Stiefel-Whitney class ( ) =

∑

≥0 ( ) by
the equation

( ) = ¯ ( ) ∗ ( )

For a map : → + , the transfer map (or Umkehr homomorphism)

! : ( )→ + ( ) is defined by the commutative diagram below:

( ) !−−−−→ + ( )

∼=


y∩[ ] ∼=



y∩[ ]

− ( ) ∗−−−−→ − ( )

Here [ ]∈ dim ( ) denotes the fundamental homology class of a manifold .
Our main theorem is the following

Theorem 1.1. For a continuous map : → + between closed topological
manifolds, (1× ( )) + ( × )∗ = 0 if and only if ∗

!( ) = ( ) for all
∈ ∗( ).

The cohomology elements, appearing in this theorem, are related to the embed-
dability of . A. Haefliger [7, Théorèm 5.2] proved the following


