A VARIATION ON THE GLAUBERMAN CORRESPONDENCE

GABRIEL NAVARRO

(Received January 24, 2001)

1. Introduction

Suppose that *G* is a finite *p*-solvable group, where *p* is a prime. Let IBr(G) be the set of irreducible Brauer characters of *G*, and let $IBr_{p'}(G)$ be those $\varphi \in IBr(G)$ of degree not divisible by *p*.

The Glauberman correspondence, in the important case where a *p*-group acts on a *p'*-group, can be viewed as a natural correspondence between $\operatorname{IBr}_{p'}(G)$ and $\operatorname{IBr}(\mathbf{N}_G(P))$, where $P \in \operatorname{Syl}_p(G)$ and *G* is a group with a normal *p*-complement. Our point in this note is to show that it is not necessary to assume that *G* has a normal *p*-complement: it suffices to assume that $\mathbf{N}_G(P)$ does.

Theorem A. Suppose that G is p-solvable, and let $P \in \text{Syl}_p(G)$. Assume that $N_G(P)$ has a normal p-complement. Then for every $\varphi \in \text{IBr}_{p'}(G)$, there is a unique $\varphi^* \in \text{IBr}(N_G(P))$ such that

$$\varphi_{\mathbf{N}_G(P)} = e\varphi^* + p\Delta,$$

where e is not divisible by p and Δ is some Brauer character of $\mathbf{N}_G(P)$ or zero. Also, the map $\operatorname{IBr}_{p'}(G) \to \operatorname{IBr}(\mathbf{N}_G(P))$ given by $\varphi \mapsto \varphi^*$ is a bijection. On the other hand, if $\tau \in \operatorname{IBr}(G)$ has degree divisible by p, then

 $\tau_{\mathbf{N}_G(P)} = p \Xi \,,$

where Ξ is some Brauer character of $N_G(P)$.

Even in the case where $N_G(P) = P$, Theorem A above tells us something nontrivial (although well-known): a Sylow *p*-subgroup *P* of a *p*-solvable group *G* is selfnormalizing, if and only if all nontrivial irreducible Brauer characters of *G* have degree divisible by *p*.

The condition of $N_G(P)$ having a normal *p*-complement is natural enough that can be read off from the character table of *G* (whenever *G* is *p*-solvable).

Theorem B. Suppose that G is p-solvable and let $P \in Syl_p(G)$. Then $N_G(P)$ has a normal p-complement iff the number of p-regular classes of G of size not divis-