Ohtsuka, H. Osaka J. Math. **39** (2002), 395–407

A CONCENTRATION PHENOMENON AROUND A SHRINKING HOLE FOR SOLUTIONS OF MEAN FIELD EQUATIONS

HIROSHI OHTSUKA

(Received June 26, 2000)

1. Introduction

Let Ω be a bounded smooth domain in \mathbb{R}^2 . In this paper, we consider the following mean field equation in statistical mechanics of point vortices; see [6, 7, 15]:

(P)
$$-\Delta u = \rho \frac{e^u}{\int_{\Omega} e^u} \quad \text{in} \quad \Omega, \qquad \rho > 0$$
$$u = 0 \quad \text{on} \quad \partial \Omega.$$

We note that the problem (P) for $\rho < 0$ is treated in [14]; see also [6, 7]. Analogous problems under Neumann boundary conditions are considered in relation to stationary problems of the Keller-Segel system of chemotaxis in [28]. Analogous problems on two-dimensional manifolds are also considered in relation to the prescribed Gauss curvature problem or Chern-Simons-Higgs gauge theory; see [12, 17, 26, 29] and references therein.

It should be also remarked that the following non-linear eigenvalue problem called the Gel'fand problem (see, for example, [3, 32]) also relates to our problem (P):

(G)
$$\begin{aligned} -\Delta u &= \lambda e^{u} \quad \text{in} \quad \Omega, \qquad \lambda > 0 \\ u &= 0 \quad \text{on} \quad \partial \Omega. \end{aligned}$$

Indeed, every solution of (G) corresponds to the solution of (P) for $\rho = \int_{\Omega} \lambda \exp u \, dx$. (P) is the Euler-Lagrange equation of the following functional:

$$J_{\rho}(u) = rac{1}{2} \int_{\Omega} |\nabla u|^2 - \rho \log \int_{\Omega} e^u \quad ext{for} \quad u \in H^1_0(\Omega).$$

Caglioti et al. show the following facts on (P):