A THEOREM OF CALABI-MATSUSHIMA'S TYPE

TOSHIKI MABUCHI

(Received May 30, 2000)

1. Introduction

In this note, we introduce the concept of the Einstein condition for a special type of conformally Kähler manifolds, called multiplier Hermitian manifolds in [7]. Then for such manifolds, an analogue of the theorems of Calabi [1] and Matsushima [8] will be proved.

For an *n*-dimensional compact connected Kähler manifold M with Kähler form ω_0 , let \mathcal{K} denote the set of all Kähler forms on M cohomologous to ω_0 . We write each $\omega \in \mathcal{K}$ as

$$\omega = \sqrt{-1} \sum_{\alpha,\beta} g_{\alpha\bar{\beta}} dz^{\alpha} \wedge dz^{\bar{\beta}}$$

by using a system $(z^1, z^2, ..., z^n)$ of holomorphic local coordinates on M. Let $G := \operatorname{Aut}^0(M)$ denote the identity component of the group of all holomorphic automorphisms of M. For a holomorphic vector field X on M, we put

$$\mathcal{K}_X := \{ \, \omega \, ; \, L_{X_{\mathbb{R}}} \omega \, = \, 0 \, \},$$

where $X_{\mathbb{R}} := X + \overline{X}$ denotes the real vector field on M associated to X. We say that X is *Hamiltonian* if in addition to $\mathcal{K}_X \neq \emptyset$, the holomorphic one-parameter subgroup

$$T := \{ \exp(tX); t \in \mathbb{C} \}$$

of *G* generated by *X* sits in the linear algebraic part of *G*, i.e., for each $\omega \in \mathcal{K}_X$, the holomorphic vector field *X* is expressible as

$$\operatorname{grad}_{\omega}^{\mathbb{C}} u_{\omega} := \frac{1}{\sqrt{-1}} \sum_{\alpha,\beta} g^{\bar{\beta}\alpha} \frac{\partial u_{\omega}}{\partial z^{\bar{\beta}}} \frac{\partial}{\partial z^{\alpha}}$$

for some real-valued smooth function $u_{\omega} \in C^{\infty}(M)_{\mathbb{R}}$ on M. Here u_{ω} is always normalized by the condition $\int_{M} u_{\omega} \omega^{n} = 0$. Throughout this note, we fix once for all a Hamiltonian holomorphic vector field $X \neq 0$ on M. In view of the moment map associated to the T-action on M, both $l_{0} := \min_{M} u_{\omega}$ and $l_{1} := \max_{M} u_{\omega}$ are independent