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A CHARACTERIZATION OF FOUR-GENUS OF KNOTS
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Introduction

We shall work in piecewise linear category. All knots and links will be assumed
to be oriented in a 3-sphere3.

The 4-genus ∗( ) of a knot in 3 = ∂ 4 is the minimum genus of orientable
surfaces in 4 bounded by [1]. Thenonorientable4-genusγ∗( ) is the minimum
first Betti number of nonorientable surfaces in4 bounded by [3]. For a slice knot,
it is defined to be zero instead of one. The first author [4] defined the 4-dimensional
clasp number ∗( ) to be the minimum number of the double points of transversely
immersed 2-disks in 4 bounded by . He gave an inequality∗( ) ≤ ∗( ) [4,
Lemma 9] and asked whether an equality∗( ) = ∗( ) holds or not. For this ques-
tion, H. Murakami and the second author [3] gave an negative answer, i.e., they proved
that there is a knot such that∗( ) < ∗( ). Thus ∗( ) is not enough to char-
acterize ∗( ). In this paper we give characterizations of 4-genus and nonorientable
4-genus by using certain 4-dimensional numerical invariants.

The local move as illustrated in Fig. 1(a) (resp. 1(b)) is called an-move (resp.
′-move) for some positive integer . Both an -move and an′-move realize a

crossing change when = 1. Thus these moves are certain kinds of unknotting opera-
tions of knots. Let (resp. ′ ) be a link as illustrated in Fig. 2(a) (resp. 2(b)). Then
we easily see that an -move (resp.′-move) can be realized by afusion/fission[2,
p. 95] of (resp. ′ ); see Fig. 3. Therefore, for a knot in∂ 4, there is asingular
disk in 4 with ∂ = that satisfies the following:
(1) is a locally flat except for points1 2 . . . ( ) in the interior of .
(2) For each ( = 1 2. . . ( )) there is a small neighborhood ( ) of in4

such that (∂ ( ) ∂( ( ) ∩ )) is a link (resp. ′ ) for some integer .
We call these points 1 2 . . . ( ) singularities of type (resp. type ′). Among
these disks satisfying the above,∗ ( ) (resp. ∗

′ ( )) is the minimum number of
( ). Note that ∗ ( ) ≤ ∗( ) and ∗

′ ( ) ≤ ∗( ).
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