A CHARACTERIZATION OF FOUR-GENUS OF KNOTS

TETSUO SHIBUYA and AKIRA YASUHARA

(Received December 16, 1999)

Introduction

We shall work in piecewise linear category. All knots and links will be assumed to be oriented in a 3-sphere S^3 .

The 4-genus $g^*(K)$ of a knot K in $S^3 = \partial B^4$ is the minimum genus of orientable surfaces in B^4 bounded by K [1]. The *nonorientable* 4-genus $\gamma^*(K)$ is the minimum first Betti number of nonorientable surfaces in B^4 bounded by K [3]. For a slice knot, it is defined to be zero instead of one. The first author [4] defined the 4-dimensional clasp number $c^*(K)$ to be the minimum number of the double points of transversely immersed 2-disks in B^4 bounded by K. He gave an inequality $g^*(K) \leq c^*(K)$ [4, Lemma 9] and asked whether an equality $g^*(K) = c^*(K)$ holds or not. For this question, H. Murakami and the second author [3] gave an negative answer, i.e., they proved that there is a knot K such that $g^*(K) < c^*(K)$. Thus $c^*(K)$ is not enough to characterize $g^*(K)$. In this paper we give characterizations of 4-genus and nonorientable 4-genus by using certain 4-dimensional numerical invariants.

The local move as illustrated in Fig. 1(a) (resp. 1(b)) is called an *H*-move (resp. H'-move) for some positive integer *n*. Both an *H*-move and an H'-move realize a crossing change when n = 1. Thus these moves are certain kinds of unknotting operations of knots. Let L_n (resp. L'_n) be a link as illustrated in Fig. 2(a) (resp. 2(b)). Then we easily see that an *H*-move (resp. H'-move) can be realized by a *fusion/fission* [2, p. 95] of L_n (resp. L'_n); see Fig. 3. Therefore, for a knot K in ∂B^4 , there is a singular disk D in B^4 with $\partial D = K$ that satisfies the following:

(1) D is a locally flat except for points $p_1, p_2, \ldots, p_{m(D)}$ in the interior of D.

(2) For each p_i (i = 1, 2, ..., m(D)) there is a small neighborhood $N(p_i)$ of p_i in B^4 such that $(\partial N(p_i), \partial (N(p_i) \cap D))$ is a link L_{n_i} (resp. L'_{n_i}) for some integer n_i .

We call these points $p_1, p_2, \ldots, p_{m(D)}$ singularities of type H (resp. type H'). Among these disks satisfying the above, $c_H^*(K)$ (resp. $c_{H'}^*(K)$) is the minimum number of m(D). Note that $c_H^*(K) \le c^*(K)$ and $c_{H'}^*(K) \le c^*(K)$.

¹⁹⁹¹ Mathematics Subject Classification : 57 M 25.