# A CHARACTERIZATION OF FOUR-GENUS OF KNOTS 

Tetsuo SHIBUYA and Akira YASUHARA

(Received December 16, 1999)

## Introduction

We shall work in piecewise linear category. All knots and links will be assumed to be oriented in a 3 -sphere $S^{3}$.

The 4-genus $g^{*}(K)$ of a knot $K$ in $S^{3}=\partial B^{4}$ is the minimum genus of orientable surfaces in $B^{4}$ bounded by $K$ [1]. The nonorientable 4-genus $\gamma^{*}(K)$ is the minimum first Betti number of nonorientable surfaces in $B^{4}$ bounded by $K$ [3]. For a slice knot, it is defined to be zero instead of one. The first author [4] defined the 4-dimensional clasp number $c^{*}(K)$ to be the minimum number of the double points of transversely immersed 2 -disks in $B^{4}$ bounded by $K$. He gave an inequality $g^{*}(K) \leq c^{*}(K)$ [4, Lemma 9] and asked whether an equality $g^{*}(K)=c^{*}(K)$ holds or not. For this question, H. Murakami and the second author [3] gave an negative answer, i.e., they proved that there is a knot $K$ such that $g^{*}(K)<c^{*}(K)$. Thus $c^{*}(K)$ is not enough to characterize $g^{*}(K)$. In this paper we give characterizations of 4 -genus and nonorientable 4 -genus by using certain 4 -dimensional numerical invariants.

The local move as illustrated in Fig. 1(a) (resp. 1(b)) is called an $H$-move (resp. $H^{\prime}$-move) for some positive integer $n$. Both an $H$-move and an $H^{\prime}$-move realize a crossing change when $n=1$. Thus these moves are certain kinds of unknotting operations of knots. Let $L_{n}$ (resp. $L_{n}^{\prime}$ ) be a link as illustrated in Fig. 2(a) (resp. 2(b)). Then we easily see that an $H$-move (resp. $H^{\prime}$-move) can be realized by a fusion/fission [2, p. 95] of $L_{n}\left(\right.$ resp. $\left.L_{n}^{\prime}\right)$; see Fig. 3. Therefore, for a knot $K$ in $\partial B^{4}$, there is a singular disk $D$ in $B^{4}$ with $\partial D=K$ that satisfies the following:
(1) $D$ is a locally flat except for points $p_{1}, p_{2}, \ldots, p_{m(D)}$ in the interior of $D$.
(2) For each $p_{i}(i=1,2, \ldots, m(D))$ there is a small neighborhood $N\left(p_{i}\right)$ of $p_{i}$ in $B^{4}$ such that $\left(\partial N\left(p_{i}\right), \partial\left(N\left(p_{i}\right) \cap D\right)\right)$ is a link $L_{n_{i}}\left(\right.$ resp. $\left.L_{n_{i}}^{\prime}\right)$ for some integer $n_{i}$. We call these points $p_{1}, p_{2}, \ldots, p_{m(D)}$ singularities of type $H$ (resp. type $H^{\prime}$ ). Among these disks satisfying the above, $c_{H}^{*}(K)$ (resp. $c_{H^{\prime}}^{*}(K)$ ) is the minimum number of $m(D)$. Note that $c_{H}^{*}(K) \leq c^{*}(K)$ and $c_{H^{\prime}}^{*}(K) \leq c^{*}(K)$.

[^0]
[^0]:    1991 Mathematics Subject Classification : 57 M 25.

