MODULI OF ALGEBRAIC SL_3 -VECTOR BUNDLES OVER ADJOINT REPRESENTATION

KAYO MASUDA

(Received June 21, 1999)

1. Introduction and result

Let G be a reductive complex algebraic group and P a complex G-module. We consider algebraic G-vector bundles over P. An algebraic G-vector bundle E over P is an algebraic vector bundle $p: E \rightarrow P$ together with a G-action such that the projection p is G-equivariant and the action on the fibers is linear. We assume that G is non-abelian since every G-vector bundle over P is isomorphic to a trivial G-bundle $P \times Q \rightarrow P$ for a G-module Q when G is abelian by Masuda-Moser-Petrie [12]. We denote by $VEC_G(P, Q)$ the set of equivariant isomorphism classes of algebraic Gvector bundles over P whose fiber over the origin is a G-module Q. The isomorphism class of a G-vector bundle E is denoted by [E]. The set $VEC_G(P, Q)$ is a pointed set with a distinguished class [Q] where Q is the trivial G-bundle $P \times Q$, and can be non-trivial when the dimension of the algebraic quotient space P//G is greater than 0 ([15], [2], [13], [11]). In fact, Schwarz ([15], cf. Kraft-Schwarz [5]) showed that $\operatorname{VEC}_G(P, Q)$ is isomorphic to an additive group \mathbb{C}^p for a nonnegative integer p determined by P and Q when dim P//G = 1. When dim P//G > 2, VEC_G(P, Q) is not necessarily finite-dimensional. In fact, $\operatorname{VEC}_G(P \oplus \mathbb{C}^m, Q) \cong (\mathbb{C}[y_1, \cdots, y_m])^p$ for a Gmodule P with one-dimensional quotient [9]. Furthermore, Mederer [14] showed that $VEC_G(P, Q)$ can contain a space of uncountably-infinite dimension. He considered the case where G is a dihedral group $D_m = \mathbb{Z}/2\mathbb{Z} \ltimes \mathbb{Z}/m\mathbb{Z}$ and P is a two-dimensional G-module V_p , on which $\mathbb{Z}/m\mathbb{Z}$ acts with weights p and -p and the generator of $\mathbb{Z}/2\mathbb{Z}$ acts by interchanging the weight spaces. Mederer showed that VEC_{D3}(V₁, V₁) is isomorphic to $\Omega^1_{\mathbb{C}}$ which is the universal Kähler differential module of \mathbb{C} over \mathbb{Q} . In this article, we show that under some conditions there exists a surjection from $\operatorname{VEC}_G(P, Q)$ to $\operatorname{VEC}_{D_3}(V_1, V_1) \cong \Omega^1_{\mathbb{C}}$. It is induced by taking a *H*-fixed point set E^H for $[E] \in \text{VEC}_G(P, Q)$ where H is a reductive subgroup of G (cf. Proposition 2.3). In particular, we obtain the first example of a moduli space of uncountably-infinite dimension for a connected group.

²⁰⁰⁰ *Mathematics Subjects Classification*. Primary: 14R20; Secondary: 14L30, 14D20. algebraic *G*-vector bundles, Equivariant Serre Problem.