Journal of the Institute of Polytechnics, Osaka City University, Vol. 6, No. 2, Series A

On (k+1)-ad homotopy groups

By Einosuke Окамото

(Received September 28, 1955)

A. L. Blakers and W. S. Massey¹⁾ have defined triad homotopy groups and used it for the problem of absolute and relative homotopy groups. They also refered to (k+1)-ad homotopy groups. I want here to prove the exactness of sequence of (k+1)ad homotopy groups, and apply to the simplest case. The author wishes to express his cordial thanks to Prof. A. Komatu, and Mr. J. Nagata, for their encouragement in this paper.

1. Notation and terminology.

Let X and Y be topological spaces, A_1, \dots, A_k subspaces of X, and B_1, \dots, B_k subspaces of Y.

The notation

(1.1)
$$f: (X; A_1, \cdots, A_k) \to (Y; B_1, \cdots, B_k)$$

means that f is a continuous function defined on X with values in Y, satisfying the condition

$$f(A_i) \subset B_i, \quad (i=1, 2, \dots, k).$$

If the sets A_1, \dots, A_k have a non-vacuous intersection, $A_1 \cap A_2 \cap \dots \cap A_k = C \Rightarrow 0$, we call the ordered collection of spaces $(X; A_1, \dots, A_k)$ a (k+1)-ad. An *n*-cell E^n is the set of vectors $\mathfrak{x} = (\mathfrak{x}_1, \dots, \mathfrak{x}_n)$, where $0 \leq \mathfrak{x}_i \leq 1$.

The symbol $F_n^k(X; A_1, \dots, A_k, p_0)(p_0 \in A_1 \cap A_2 \cap \dots \cap A_k)$ will denote the function space of all maps

 $f: (E^n \times E^k) \to (X) ,$

such that, for all vectors $\mathfrak{x} = (x_1, \dots, x_n) \in E^n$ and $\mathfrak{y} = (y_1, \dots, y_k) \in E^k$,

(1.2)
$$f(x_1, \dots, x_n, y_1, \dots, y_k) = p_0$$
 (if one of $x_i = 0$ or 1, or one of $y_j = 1$),
 $f(x_1, \dots, x_n, y_1, \dots, y_k) \in A_i$ (if $y_i = 0$),

and we introduce the compact open topology in it.

Analogously, we use another symbol $\overline{F}_n^k(X; A_1, \dots, A_k)$, which is the function space of all maps

$$f: (\dot{E}^{n+1} \times E^k) \to X,$$

such that

(1.3)
$$f(x_1, \dots, x_{n+1}, y_1, \dots, y_k) = p_0$$
 (if $g = (x_1, 0 \dots 0)$ or $x_i = 0$ or $x_i = 1$
or one of $y_i = 1$),