ALGEBRA OF STABLE HOMOTOPY OF MOORE SPACE

By Noboru YAMAMOTO

(Received May 28, 1963)

O. **Introduction**

Let p denote an odd prime. A Moore space $M_p^n = M(n, Z_p)$ is a simply connected space with two non-vanishing (integral) homology groups $H_0(M_p^n)=Z$ and $H_n(M_p^n)=Z_p$. The mod p cohomology structure of M_p^n is as follows: $H^{0}(M_{p}^{n}; Z_{p}) = Z_{p}$, $H^{n}(M_{p}^{n}; Z_{p}) = Z_{p} = \{e^{n}\}, H^{n+1}(M_{p}^{n}; Z_{p}) = Z_{p}$ $= \{e^{n+1}\}, H^{i}(M_{p}^{n};Z_{p})=0, i=0, n, n+1, \text{ and } \Delta e^{n}=e^{n+1} \text{ for the mod } p$ Bockstein operator Δ , for $n \geq 2$.

The *m*-th homotopy group $\pi_m(Z_p; n, Z_p)$ of the Moore space $M(n, Z_p)$ with the coefficient group Z_p (or, briefly, *the m-th mod p homotopy group of* $M(n, Z_n)$ is the set of homotopy classes of maps $M_p^m \rightarrow M_p^n$ with the track addition (See [3]).

The set $\pi_* = \sum \pi_{N+i}(Z_p; N, Z_p)$ (N denotes a sufficiently large integer) of the stable homotopy groups of the Moore space $M(N, Z_p)$ with the coefficient group Z_p (i.e., the stable mod p homotopy groups of $M(N, Z_p)$) admits a ring structrue with respect to the composition. Really, it forms an algebra over the field Z_{ν} .

In this paper, we shall investigate its structure by means of the results and the methods of Toda $\lceil 10 \rceil$, $\lceil 11 \rceil$, $\lceil 12 \rceil$.

For simplicity, we shall denote $\pi_{N+i}(Z_p; N, Z_p)$ by π_i and we shall say that an element of π_i is of dimension *i*.

Among the elements of π_*, δ denotes the element in π_{-1} such that $\delta^* e_2^N = (-1)^N e_1^N$ for the generators $e_1^N \in H^N(M_n^{N-1}; Z_n)$ and $e_2^N \in H^N(M_n^N; Z_n)$; ι denotes the class of the identity map of M_p^N ; α denotes the element in $\pi_{2\ell p-1}$ such that $\mathcal{P}_{\alpha}^1 e^{N+1}=(-1)^{N+1}e^{N+2(p-1)}$ for the generators $e^{N+1} \in$ $H^{N+1}(M_p^N; Z_p)$ and $e^{N+k} \in H^{N+k}(M_p^{N+k}; Z_p)$, $k=2(p-1)$, where \mathcal{P}_α^1 is the functional cohomological operation with respect to \mathcal{P}^1 and α ; β_1 denotes the element in $\pi_{2p(p-1)-1}$ such that $\alpha\beta_1=0$ and $\beta_{\beta_1}^p e^{N+1}=(-1)^{N+1}e^{N+2p(p-1)}$ for the generators $e^{N+1} \in H^{N+1}(M_p^N; Z_p)$ and $e^{N+1} \in H^{N+1}(M_p^{N+1-1}; Z_p)$, $l = 2p(p-1)$, where $\mathcal{P}_{\beta_1}^p$ is the functional cohomological operation with respect to θ^p and β_1 ; and, β_s , $1 \leq s \leq p$, denote the element in $\pi_{2(s_p+s-1)(p-1)-1}$