ALGEBRA OF STABLE HOMOTOPY OF MOORE SPACE

Ву Noboru Уамамото

(Received May 28, 1963)

0. Introduction

Let p denote an odd prime. A Moore space $M_p^n = M(n, Z_p)$ is a simply connected space with two non-vanishing (integral) homology groups $H_0(M_p^n) = Z$ and $H_n(M_p^n) = Z_p$. The mod p cohomology structure of M_p^n is as follows: $H^0(M_p^n; Z_p) = Z_p$, $H^n(M_p^n; Z_p) = Z_p = \{e^n\}$, $H^{n+1}(M_p^n; Z_p) = Z_p$ $= \{e^{n+1}\}$, $H^i(M_p^n; Z_p) = 0$, $i \neq 0, n, n+1$, and $\Delta e^n = e^{n+1}$ for the mod pBockstein operator Δ , for $n \geq 2$.

The *m*-th homotopy group $\pi_m(Z_p; n, Z_p)$ of the Moore space $M(n, Z_p)$ with the coefficient group Z_p (or, briefly, the *m*-th mod *p* homotopy group of $M(n, Z_p)$) is the set of homotopy classes of maps $M_p^m \to M_p^n$ with the track addition (See [3]).

The set $\pi_* = \sum_i \pi_{N+i}(Z_p; N, Z_p)$ (N denotes a sufficiently large integer) of the stable homotopy groups of the Moore space $M(N, Z_p)$ with the coefficient group Z_p (i.e., the stable mod p homotopy groups of $M(N, Z_p)$) admits a ring structrue with respect to the composition. Really, it forms an algebra over the field Z_p .

In this paper, we shall investigate its structure by means of the results and the methods of Toda [10], [11], [12].

For simplicity, we shall denote $\pi_{N+i}(Z_p; N, Z_p)$ by π_i and we shall say that an element of π_i is of dimension *i*.

Among the elements of π_* , δ denotes the element in π_{-1} such that $\delta^* e_2^N = (-1)^N e_1^N$ for the generators $e_1^N \in H^N(M_p^{N-1}; Z_p)$ and $e_2^N \in H^N(M_p^N; Z_p)$; ι denotes the class of the identity map of M_p^N ; α denotes the element in $\pi_{2(p-1)}$ such that $\mathcal{O}_a^1 e^{N+1} = (-1)^{N+1} e^{N+2(p-1)}$ for the generators $e^{N+1} \in H^{N+1}(M_p^N; Z_p)$ and $e^{N+k} \in H^{N+k}(M_p^{N+k}; Z_p)$, k=2(p-1), where \mathcal{O}_a^1 is the functional cohomological operation with respect to \mathcal{O}^1 and α ; β_1 denotes the element in $\pi_{2p(p-1)-1}$ such that $\alpha\beta_1=0$ and $\mathcal{O}_{\beta_1}^p e^{N+1}=(-1)^{N+1} e^{N+2p(p-1)}$ for the generators $e^{N+1} \in H^{N+1}(M_p^N; Z_p)$ and $e^{N+1} \in H^{N+1}(M_p^{N+l-1}; Z_p)$, l=2p(p-1), where $\mathcal{O}_{\beta_1}^n$ is the functional cohomological operation with respect to \mathcal{O}^p and β_1 ; and, β_s , $1 \leq s \leq p$, denote the element in $\pi_{2(sp+s-1)(p-1)-1}$