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This is a continuation of the paper [3], and deals with the mod p cohomology algebra 
H*(S(m); Zv) of the symmetric group S(m) of degree m, where 1 ;;;; m ;;;; oo and 
p is a prime. The author gave a basis for the homology module H*(S (m); Zv) in 
[3]. In the present paper, we try to describe the diagonal homomorphism 

d*: H*(S(m); Zv) ~ H*(S(m); Zv) (29 H*(S(m); Zv) 

in terms of the basis, and by its conversion we derive sorne results on the cohomology 
algebra H*(S(m); Zv)· Throughout this paper a prime p is fixed. 

1. Recapitulation. 
For the convenience of the reader, the results which are proved m [2] and [3] 

are recapitulated in this section. 

(A) Denote by }.:i', : S(m) ~ S(n) the natural inclusion map, where m < n. 
Then, for any coefficient group G, the homomorphism À:i',*: H*(S(m); G)~H*(S 
(n);G) induced by À:i', is a monomorphism and its image is a direct summand of 
H*(S(n);G); the homomorphism À:i',*: H*(S(n); G) ~ H*(S(m); G) induced by 
À:i', is an epimorphism and its kernel is a direct summand of H*( S( n); G). If q < 
(m + 1)/2 then .1::;::ï?: Hq{S(m); G) ~ Hq{S(m+l);G) and .1::;+1* : Hq(S(m+l);G) 
~ Hq( S( m); G) are isomorphisms. 

(B) Let k be a field, and let ,u: S(m) X S(n)--~S(m+n) denote a homomorphism 
defined by 

la(i) if 1 < i <m, 
,u(a X {J)) (i) = 

{J(i-m) + m ifm< i < m + n, 

where aE S(m) and {JE S(n). Then, for elements a EHi(S(m); k) and b EHi(S(n); 
k) we define a product ab E Hi+iS(m+n); k) by 

ab = ,u*(a@b), 

where ,u*: H*(S(m); k) (29 H*(S(n); k) ~ H*(S(m+n); k) is the homomorphism 
induced by ,u. The product is bilinear, associative and (anti-) commutative. Denote 
by S( oo) the infinite symmetric group, i.e., the direct limit of {S(m), À~}. Let 
Àm: S(m) --~ S(oo) denote the natural inclusion. Then the rule 

Àm*(a) Àn*(b) = Àm+n*(ab) 


